

Introduction to Robotics

Instructor

Tom Poliquin

tpoliquin@lumenetix.com

Introduction to Robotics Course Overview

History of Robotics Embedded Systems Sensors Actuators Two Wheeled Robot C Code / Hardware Interfaces FSMs / Etc. Projects

Introduction to Robotics Introduction

Name

Where you work

What you expect from class

If awakened what language

What is this class ?

Quick overview of Robotics

Quick introduction to Embedded Systems

Basic real time programming paradigms

O)verview of basic sensors and actuators

What this class is not ...

No Deep Learning

No Kinematics Theory

No Baysean Decision Making

No High Level Abstractions

No Multivariate Calculus

Class Structure

Homework Review

Lecture

Quizes (?)

Homework Prep

---- Variable ----

Introduction to Robotics Meta Info

Extremely Broad Topic

Potentially Overwhelming Prerequisites

Too Short

Too Long

Introduction to Robotics Where are the Robots?

Behind the scenes Warehouse Milking Machines Car Assy

Interacting with humans Driverless Cars Education Companion

Introduction to Robotics Robotics Overview

What is a robot?

What robots do now

Bio-inspired robots

Humanoid robots

Swarms and evolution

Future

What is a robot?

Senses

Acts Purposely

Intelligent / Autonomous

Introduction to Robotics Brief History

Term from RUR (1920) Aristotle 320 BC (intelligent tool) 60 AD (3 wheeled vehicle) 16th Century Golem (Humanoid Myth) DaVinci Cart 1495 Autonomous Humanoid 1948 Walters Electric Vehicle

Introduction to Robotics Philosophy Break

What do we want robots to do?

Member of congress

Bomb Disposal

Policeman

Baseball Pitcher

Ariline Pilot

Introduction to Robotics Robot Parts

Sensors

Actuators

Brain (Not always required *)

* Braitenberg Vehicles

Introduction to Robotics Robot Functions

	Bio	Robot
Sensing	Eyes Ears Whiskers	Cameras Microphones Switches
Signalling	Voice Face	Loudspeaker Wifi
Moving	Legs	Motors
Manipulating	Hands	Motors
Energy	Stomach	Batteries

Introduction to Robotics How to Classify

Complicated

See tables 2 and 3 in text

Introduction to Robotics Autonomy

Remotely Operated (Is this really a robot?)

Perform preprogrammed mission (by human)

Automous (Cruise missle)

Introduction to Robotics Roomba

Rodney Brooks 2002 (7 generations) Senses Obstacles Senses Edges Senses Dust Bin Full Senses Battery Discharged Moves Random Walk Inefficient (early versions)

Introduction to Robotics Where is Intelligence?

Looks Intelligent

Really Intelligent

Introduction to Robotics Increase Intelligence

Preprogram more behaviours Design robot to learn and develop

World is difficult

Language

Culture

Introduction to Robotics Current Robots

Assembly Line

Stationary

Rigid Environment

How to Program

E.G. Spot Welder

Current Robots

Fetch and Carry

Mobile Directed Cooperation

Can Use Localization and Mapping

Introduction to Robotics Current Robots

Tele-Operated

Need communication link Undersea Rovers UAV Surgical Robots

Introduction to Robotics Current Robots

> Education Development Research

Introduction to Robotics Biologically Inspired

Artificial Life

Behaviour Based vs Sense-Plan-Act

Learning

Introduction to Robotics Humanoid

Uncanny Valley

Companions

Termites

Ants

Cisco Routers

UAVs

Introduction to Robotics Ethics

Self Driving Cars

Speedy (Asimov)

Humans Make Skynet

Future

Planteary Explorers Replication MicroBots NanoBots (Grey Goo) Language / Culture

Meet Your Robot

Brain

OptoSensors (Obviously Sensors) Motor (Actuator) LEDs (Actuator) Speaker (Actuator)

Embedded Systems

How are they different from normal programs ?

Normal programs have limited I/O Not usually real time Run on Desktops / Laptops Concurrancy usually required

Embedded Systems

Care a lot about time Have lots of different types of I/O Often use polling techniques Often use interrupts Often use DMA

Time

Embedded Systems usually have one core

Must give the appearance of doing multiple things at the same time

Often must have minimum latency to events Must be close to real time

Introduction to Robotics Input / Output

Input / Output is quite varied,

Individual Pins (Digital) Individual Pins (Analog) Peripherals Many protocols,

Serial	SPI	
I2C	CAN	Parallel
DMX	USB	

Polling

Polling is a technique for reading sensors, or watching for events

Simple Generally CPU intensive Difficult to achieve low latency

Interrupts

Interrupts are a hardware aid to handling events using a software callback

More complex than polling Low latency Low CPU impact Potential concurrency issues
Introduction to Robotics Meet Your Robot

General features of the Pololu 3pi robot, top view.

Bottom Side

Introduction to Robotics Pin Functions

Pin Assignment Table Sorted by Function

Function	ATmegaxx8 Pin	Arduino Pin
free digital I/Os (x3) (remove PC5 jumper to free digital pin 19)	PD0, PD1, PC5	digital pins 0, 1, 19
free analog inputs (if you remove jumpers, x3)	PC5, ADC6, ADC7	analog inputs 5 – 7
motor 1 (left motor) control (A and B)	PD5 and PD6	digital pins 5 and 6
motor 2 (right motor) control (A and B)	PD3 and PB3	digital pins 3 and 11
QTR-RC reflectance sensors (left to right, x5)	PC0 – PC4	digital pins 14 – 18
red (left) user LED	PD1	digital pin 1
green (right) user LED	PD7	digital pin 7
user pushbuttons (left to right, x3)	PB1, PB4, and PB5	digital inputs 9, 12, and 13
buzzer	PB2	digital pin 10
LCD control (RS, R/W, E)	PD2, PB0, and PD4	digital pins 2, 8, and 4
LCD data (4-bit: DB4 – DB7)	PB1, PB4, PB5, and PD7	digital pins 9, 12, 13, and 7
reflectance sensor IR LED control (drive low to turn IR LEDs off)	PC5 (through jumper)	digital pin 19
user trimmer potentiometer	ADC7 (through jumper)	analog input 7
2/3rds of battery voltage	ADC6 (through jumper)	analog input 6
ICSP programming lines (x3)	PB3, PB4, PB5	digital pins 11, 12, and 13
reset pushbutton	PC6	reset
UART (RX and TX)	PD0 and PD1	digital pins 0 and 1
I2C/TWI	inaccessable to user	
SPI	inaccessable to user	

Which Pins Do What ?

Introduction to Robotics Peripherals

Two kinds of Peripherals

Internal

TimersEPROMSerialSPIWatchdogGPIOPower MgmtInterrupt Ctllr

External

Motors LEDs Buttons OptoSensors IMU etc.

Timers

Introduction to Robotics Watchdog

Used to prevent hangups

Countdown timer activated

Code must set a register periodically to keep counter from expiring

> It watchdog timer expires usually performs soft reset

Introduction to Robotics Interrupts

16.1. Interrupt Vectors in ATmega328/P

Table 16-1. Reset and Interrupt Vectors in ATmega328/P

Vector No	Program Address ⁽²⁾	Source	Interrupts definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 0
4	0x0006	PCINT0	Pin Change Interrupt Request 0
5	0x0008	PCINT1	Pin Change Interrupt Request 1
6	0x000A	PCINT2	Pin Change Interrupt Request 2
7	0x000C	WDT	Watchdog Time-out Interrupt
8	0x000E	TIMER2_COMPA	Timer/Counter2 Compare Match A
9	0x0010	TIMER2_COMPB	Timer/Coutner2 Compare Match B
10	0x0012	TIMER2_OVF	Timer/Counter2 Overflow
11	0x0014	TIMER1_CAPT	Timer/Counter1 Capture Event
12	0x0016	TIMER1_COMPA	Timer/Counter1 Compare Match A
13	0x0018	TIMER1_COMPB	Timer/Coutner1 Compare Match B
14	0x001A	TIMER1_OVF	Timer/Counter1 Overflow
15	0x001C	TIMERO_COMPA	Timer/Counter0 Compare Match A
16	0x001E	TIMER0_COMPB	Timer/Coutner0 Compare Match B
17	0x0020	TIMER0_OVF	Timer/Counter0 Overflow
18	0x0022	SPI STC	SPI Serial Transfer Complete
19	0x0024	USART_RX	USART Rx Complete
20	0x0026	USART_UDRE	USART Data Register Empty
21	0x0028	USART_TX	USART Tx Complete
22	0x002A	ADC	ADC Conversion Complete
23	0x002C	EE READY	EEPROM Ready
24	0x002E	ANALOG COMP	Analog Comparator

Special fixed addresses

Introduction to Robotics Firmware

High Level Drivers

Easy to do Easy Things Sometimes buggy Sometimes difficult to integrate **Timing Conflicts Peripheral Conflicts** Pins Interrupts Timers **CPU** Cycle

Firmware

Low Level Drivers

Hard to do Easy Things Less code; Less bugs. Close to bare metal Simpler to integrate Full control of,

> Interrupts Timers CPU utilization Timing

Modules

Follow good programming practices Small, single purpose modules ''c' and 'h' files 'exports' and prototypes

Introduction to Robotics Multitasking

Cooperative Periodic task execution Don't hog the CPU Preemptive External entity determines when a task runs

Homegrown Difficult to get right in large projects

RTOS

Bit Constants

TMREG = 0x05Update all bitsTMREG = 0b0000101

TMREG |= 0x04Updates only bit 2 (1)TMREG &= 0x04Updates only bit 2 (0)

Better #define LAUNCH_MISSLES 5 TMREG |= (1 << LAUNCH_MISSLES) TMREG &= ~(1 << LAUNCH_MISSLES)

Which one launches the missles ?

Introduction to Robotics Timer Overview

Timers are complicated Probably the most comple peripheral

Timers ...

Provide precise timing Generate periodic interrupts Toggle output pins on schedule Generate complex PWM signals Count events Interrupt on pin changes Simplify communication routines

Timer Overview

Polling is bad It eats up CPU cycles

Doing many things with a polling framework makes the code complex

Timers help eliminate polling through the use of interrupts

Electronics

Instant Electronics Course

Ohms Law Kirchoff's Law Voltage Dividers Capacitors Inductors

Practical Electronics

Typical Capacitor Usage DC Blocking Filtering Delay **Typical Inductor Usage** Noise Filter Switching Supplies Typical FET Usage **Power Driver** Analog Switch

MOSFETs

Introduction to Robotics LED Specs (Typ)

LEDs are current devices (not voltage)

They are all different !					
Yellow	19 mcd Vf = 2.1V	585 nm If = 20ma			
Blue	lf = 20ma Vf = 3.2V	500 mcd 468 nm			
Green	lf = 2ma Vf = 1.8V	38 mcd 570 nm			

Buzzer

Introduction to Robotics External Peripherals

Motor

Gear ratio:	30:1
Free- <mark>running</mark> speed:	700 rpm
Free-running current:	60 mA
Stall torque:	6 oz∙in
Stall current:	540 mA

Motor Driver

Standard H Driver

Introduction to Robotics Optosensor

Tricky

..... but cheap

Mechanics

You want to be able to control your robot

This requires a 'Control System'

System Identification makes this easier

System Identification

You need some equations of motion

College of Engineering © Eng. Vib, 3rd Ed. College of Engineering

4/53

How do you get these?

You need some basic physics You need to decide between, State Space Laplace For small systems ... Laplace For larger more complex systems ... State Space

Let's Pick Laplace

We make our model (some math)

We decide what we want to do Our goal is to make our two wheeled robot to move in a straight line in a particular direction

The simplest and most common control method for simple systems is a PID controller

New_Feedback_Value

Introduction to Robotics PID Controller

A simple thermostat example

Automatic control loop

Introduction to Robotics Octave Example

MATLAB Simulation Mass Spring Dashpot System

- Transfer function $G(S) = \frac{Y(s)}{F(s)} = \frac{1}{ms^2 + bs + k}$
- m=1, k=1 $\ddot{x} + 2\zeta \omega_0 \dot{x} + \omega_0^2 x = 0.$
- Case study
 - b=1 (underdamped ζ <1)
 - b=2 (critically damped $\zeta=1$)
 - b=3 (over damped ζ >1)

num = 1 den = [1 b 1] sys = tf(num, den) step(sys)

Bayesian Statistics

Bayes

Uses -Inference **Statistics** Probability Programming (New) **Probabilistic Robotics** Localization

Competitive Advantage

Bayes

Piano Example

Cancer Screening Example

Robotic Example

Particles

Bayes in Robotics

Main use is Localization We can't do a lot until we know where we are.

Used with Particles

MDP

Markov Decision Process

Assumes next state only dependent on previous state

Tied to Bayes

Image Processing

Large Processing Power Simple - Edge Detection Complex - Deep Learning Hard Problem Al

Introduction to Robotics

Summary

What did we learn Robotics is a gigantic field Pick and Place Industrial Medical Recovery Companions

.....