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A foundational dialectic

Suppose we’re committed to a particular foundational programme of
limited strength, such as predicativism or finitistic reductionism.

1 How do we know which theorems we’re entitled to assert?

2 How do we know what mathematics we’re giving up?
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Reverse mathematics can help

If we formalise our foundation in second order arithmetic, results in reverse
mathematics will let us know which theorems we’re entitled to assert and
which remain out of reach.

This is done by proving equivalences between such theorems and
subsystems of second order arithmetic, over a weak base theory.
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Syntax and semantics of second order arithmetic

Second order arithmetic is a two-sorted first order system with number
variables m, n, i , j , . . . and set variables X ,Y ,Z , . . . ranging over subsets
of the domain.

L2-structures are models of the first order language of arithmetic extended
with a collection of sets for the second order variables to range over:

M = 〈M, S ,+, ·, <, 0, 1〉

where S ⊆ P(M).
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Axioms of second order arithmetic

The axioms of second order arithmetic or Z2 are the universal closures of
the following:

Basic arithmetic axioms: PA minus induction.

Induction axiom:

(0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X ))→ ∀n(n ∈ X ).

Comprehension scheme:

∃X∀n(n ∈ X ↔ ϕ(n))

for all ϕ with X not free.
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Subsystems of second order arithmetic

Subsystems of Z2 are primarily obtained by restricting the comprehension
scheme to particular syntactically defined subclasses.

Subsystems of Z2 Defining conditions

RCA0 Recursive (∆0
1) comprehension

WKL0 RCA0 plus weak König’s lemma

ACA0 Arithmetical comprehension

ATR0 ACA0 plus arithmetical transfinite recursion

Π1
1−CA0 Π1

1 comprehension
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Foundational programmes and the Big Five

The most important subsystems of second order arithmetic, known as the
Big Five, formally capture some philosophically-motivated programmes in
foundations of mathematics.

Foundational programmes Subsystems of Z2

Constructivism RCA0

Finitistic reductionism WKL0

Predicativism ACA0

Predicative reductionism ATR0

Impredicativity Π1
1−CA0

Benedict Eastaugh (University of Bristol) Shore’s computational reverse mathematics May 13, 2012 8 / 26



Foundational programmes and the Big Five

The most important subsystems of second order arithmetic, known as the
Big Five, formally capture some philosophically-motivated programmes in
foundations of mathematics.

Foundational programmes Subsystems of Z2

Constructivism RCA0

Finitistic reductionism WKL0

Predicativism ACA0

Predicative reductionism ATR0

Impredicativity Π1
1−CA0

Benedict Eastaugh (University of Bristol) Shore’s computational reverse mathematics May 13, 2012 8 / 26



Varieties of induction

The second order induction axiom ties the strength of induction to the
strength of the comprehension axiom: we can do induction only over those
sets we can prove exist.

Contrast this with the induction scheme, each instance of which is a
theorem of Z2:

(ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n + 1)))→ ∀n ϕ(n)

for all formulae ϕ in the language of second order arithmetic.

Weaker forms of induction can be obtained by restricting this scheme to
particular classes such as the Σ0

1 formulae.
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Induction axioms and subsystems of Z2

Σ0
1 induction Induction axiom Full induction scheme

RCA0 RCA

WKL0 WKL

ACA0 ACA

ATR0 ATR

Π1
1−CA0 Π1

1−CA
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Computational reverse mathematics

Developed by Richard Shore in two recent papers (Shore 2010, 2011),
computational reverse mathematics draws on recursion theory rather than
proof theory.

It has a two-fold motivation:

Giving an account of reverse mathematics which most mathematicians
will find natural, in computational and construction-oriented terms.

Extending reverse mathematical analysis from countable structures to
uncountable ones.
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The main question

Can computational reverse mathematics be used to carry out the
foundational analysis outlined at the beginning?

To answer this, we first need to look at the details of Shore’s programme.
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ω-models

Computational reverse mathematics builds on a tradition of looking at
ω-models, structures which extend the standard model of arithmetic N.

First order part is the natural numbers ω = {0, 1, 2, . . . }.

Second order part C ⊆ P(ω) closed under particular
recursion-theoretic operations.

Closure under more operations ⇔ model of stronger theories.
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Turing ideals

These models are also known as Turing ideals.

All Turing ideals are models
of RCA. Turing ideals satisfying stronger closure conditions are also
models of stronger theories such as ACA.

Definition (Turing ideal)

Let C be a nonempty subset of P(ω) closed under Turing reducibility and
recursive joins. Then we call C a Turing ideal.

A set X is Turing reducible to a set Y , X ≤T Y , iff there is a Turing
machine with an oracle for Y which computes X .

The recursive join of two sets X and Y is given by

X ⊕ Y = {2n : n ∈ X} ∪ {2n + 1 : n ∈ Y } .
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Closure conditions and subsystems of Z2

Closure conditions Subsystems of Z2

Turing reducibility and recursive joins RCA

Jockush–Soare low basis theorem WKL

Turing jump ACA

Hyperarithmetic reducibility ATR

Hyperjump Π1
1−CA
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Computable entailment and equivalence

Traditional reverse mathematics looks for provable equivalences over a
base theory.

Computational reverse mathematics looks for computable
equivalences.

Definition (Computable entailment and equivalence)

Let C be a Turing ideal, and let ϕ be a sentence of second order
arithmetic. C computably satisfies ϕ if ϕ is true in the ω-model whose
second order part consists of C.

A sentence ψ computably entails ϕ, ψ |=C ϕ, if every Turing ideal C
satisfying ψ also satisfies ϕ.

Two sentences ψ and ϕ are computably equivalent, ψ ≡C ϕ, if each
computably entails the other.

These definitions extend to theories in the obvious way.
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Computable entailment is insensitive to induction

Because computable entailment only considers ω-models, systems with
restricted induction are computably equivalent to those with the full
second order induction scheme.

RCA0 ≡C RCA

WKL0 ≡C WKL

ACA0 ≡C ACA

...

Why is this problematic? Because the full second order induction scheme
is proof-theoretically very strong.
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Hilbert’s programme

Hilbert’s programme was to reduce infinitary mathematics to finitary
mathematics.

This reduction was to be accomplished by giving a finitary consistency
proof for an infinitary system which we can identify with Z2.

Gödel’s second incompleteness theorem shows that there is no such proof.
Hilbert’s programme therefore cannot be carried out in its entirety.
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Partial realisations of Hilbert’s programme

Stephen Simpson (1988) has raised the possibility of partial realisations of
Hilbert’s programme.

The main question he addresses is this: how much of infinitary
mathematics can we retain in a system which is Π0

1-conservative over
primitive recursive arithmetic (PRA)?

Theorem (Friedman)

WKL0 is Π0
2-conservative over PRA.

Theorem (Sieg)

PRA proves that WKL0 is Π0
2-conservative over PRA.
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WKL is not finitistically reducible

Theorem

WKL ` Con(PRA).

Con(PRA) is a Π0
1 statement not provable in PRA, so WKL is not

Π0
1-conservative over PRA and therefore not finitistically reducible to it.
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Computable entailment does not preserve justification

A key property of any entailment relation is preserving justification: if we
are justified in accepting the antecedent then we are also justified in
accepting the consequent.

By their own lights a finitistic reductionist will be justified in accepting the
Π0
1 sentences ϕ proved by WKL0 but not those proved by WKL, since

WKL is not finitistically reducible.

But WKL0 |=C WKL, so computable entailment does not preserve
justification within the foundational programmes it seeks to analyse.
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Conclusion

Computational reverse mathematics doesn’t respect the justificatory
structure of foundational programmes.

So whatever its merits, Shore’s framework doesn’t seem suitable for the
kind of foundational analysis outlined at the beginning of the talk.
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Thank you.
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