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34.1 Introduction

Switching power converters must be suitably designed and
controlled in order to supply the voltages, currents, or fre-
quency ranges needed for the load and to guarantee the
requested dynamics [1–4]. Furthermore, they can be designed
to serve as “clean” interfaces between most loads and the elec-
trical utility system. Thereafter, the set switching converter
plus load behaves as an almost pure electrical utility resistive
load.

This chapter provides basic and some advanced skills to con-
trol electronic power converters, taking into account that the
control of switching power converters is a vast and interdis-
ciplinary subject. Control designers for switching converters
should know the static and dynamic behavior of the elec-
tronic power converter and how to design its elements for the
intended operating modes. Designers must be experts on con-
trol techniques, especially the nonlinear ones, since switching
converters are nonlinear, time-variant, discrete systems, and

designers must be capable of analog or digital implementa-
tion of the derived modulators, regulators, or compensators.
Powerful modeling methodologies and sophisticated control
processes must be used to obtain stable-controlled switching
converters, not only with satisfactory static and dynamic per-
formance, but also with low sensitivity against load or line
disturbances or, preferably, robustness.

In Section 34.2, the techniques to obtain suitable nonlinear
and linear state-space models, for most switching converters,
are presented and illustrated through examples. The derived
linear models are used to create equivalent circuits, and to
design linear feedback controllers for converters operating in
the continuous or discontinuous mode. The classical linear
time-invariant systems control theory, based on Laplace trans-
form, transfer function concepts, Bode plots or root locus, is
best used with state-space averaged models, or derived circuits,
and well-known triangular wave modulators for generating
the switching variables or the trigger signals for the power
semiconductors.
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Nonlinear state-space models and sliding-mode controllers,
presented in Section 34.3, provide a more consistent way of
handling the control problem of switching converters, since
sliding mode is aimed at variable structure systems, as are
switching power converters. Chattering, a characteristic of slid-
ing mode, is inherent to switching power converters, even if
they are controlled with linear methods. Chattering is very
hard to remove and is acceptable in certain converter vari-
ables. The described sliding-mode methodology defines exactly
the variables that need to be measured, while providing the
necessary equations (control law and switching law) whose
implementation gives the robust modulator and compensator
low-level hardware (or software). Therefore, the sliding-mode
control integrates the design of the switching converter modu-
lator and controller electronics, reducing the needed designer
expertise. This approach requires measurement of the state
variables, but eliminates conventional modulators and lin-
ear feedback compensators, enabling better performance and
robustness. It also reduces the converter cost, control com-
plexity, volume, and weight (increasing power density). The
so-called main drawback of sliding mode, variable switch-
ing frequency, is also addressed, providing fixed-frequency
auxiliary functions and suitable augmented control laws to
null steady-state errors due to the use of constant switching
frequency.

Fuzzy control of switching converters (Section 34.4) is a
control technique needing no converter models, parameters,
or operating conditions, but only an expert knowledge of the
converter dynamics. Fuzzy controllers can be used in a diverse
array of switching converters with only small adaptations, since
the controllers, based on fuzzy sets, are obtained simply from
the knowledge of the system dynamics, using a model reference
adaptive control philosophy. Obtained fuzzy control rules can
be built into a decision-lookup table, in which the control
processor simply picks up the control input corresponding
to the sampled measurements. Fuzzy controllers are almost
immune to system parameter fluctuations, since they do not
take into account their values. The steps to obtain a fuzzy
controller are described, and the example provided compares
the fuzzy controller performance to the current-mode control.

34.2 Switching Power Converter Control
Using State-space Averaged Models

34.2.1 Introduction

State-space models provide a general and strong basis for
dynamic modeling of various systems including switching con-
verters. State-space models are useful to design the needed
linear control loops, and can also be used to computer simulate
the steady state, as well as the dynamic behavior, of the switch-
ing converter, fitted with the designed feedback control loops

and subjected to external perturbations. Furthermore, state-
space models are the basis for applying powerful nonlinear
control methods such as sliding mode. State-space averaging
and linearization provides an elegant solution for the appli-
cation of widely known linear control techniques to most
switching converters.

34.2.2 State-space Modeling

Consider a switching converter with sets of power
semiconductor structures, each one with two different cir-
cuit configurations, according to the state of the respective
semiconductors, and operating in the continuous mode of
conduction. Supposing the power semiconductors as con-
trolled ideal switches (zero on-state voltage drops, zero off-
state currents, and instantaneous commutation between the
on- and off-states), the time (t ) behavior of the circuit, over
period T , can be represented by the general form of the
state-space model (34.1):

ẋ = Ax + Bu

y = Cx + Du
(34.1)

where x is the state vector, ẋ = dx/dt , u is the input or
control vector, and A, B, C, D are respectively the dynamics
(or state), the input, the output, and the direct transmission
(or feedforward) matrices.

Since the power semiconductors will either be conducting
or blocking, a time-dependent switching variable δ(t ) can be
used to describe the allowed switch states of each structure
(i.e. δ(t ) = 1 for the on-state circuit and δ(t ) = 0 for the
off-state circuit). Then, two subintervals must be considered:
subinterval 1 for 0 ≤ t ≤ δ1T , where δ(t ) = 1 and subinterval
2 for δ1T ≤ t ≤ T where δ(t ) = 0. The state equations of the
circuit, in each of the circuit configurations, can be written as:

ẋ = A1x + B1u

y = C1x + D1u
for 0 ≤ t ≤ δ1T where δ (t ) = 1

(34.2)

ẋ = A2x + B2u

y = C2x + D2u
for δ1T ≤ t ≤ T where δ (t ) = 0

(34.3)

34.2.2.1 Switched State-space Model
Given the two binary values of the switching variable δ(t ),
Eqs. (34.2) and (34.3) can be combined to obtain the nonlinear
and time-variant switched state-space model of the switching
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converter circuit, Eq. (34.4) or (34.5):

ẋ = [A1δ(t )+A2(1−δ(t ))]x+[B1δ(t )+B2(1−δ(t ))]u

y = [C1δ(t )+C2(1−δ(t ))]x+[D1δ(t )+D2(1−δ(t ))]u
(34.4)

ẋ = AS x + BS u

y = CS x + DS u
(34.5)

where AS = [A1δ (t ) + A2 (1 − δ (t ))], BS = [B1δ (t ) +
B2 (1 − δ (t ))], CS = [C1δ (t ) + C2 (1 − δ (t ))], and DS =
[D1δ (t ) + D2 (1 − δ (t ))].

34.2.2.2 State-space Averaged Model
Since the state variables of the x vector are continuous,
using Eq. (34.4), with the initial conditions x1(0) = x2(T ),
x2(δ1T ) = x1(δ1T ), and considering the duty cycle δ1 as the
average value of δ(t ), the time evolution of the converter state
variables can be obtained, integrating Eq. (34.4) over the inter-
vals 0 ≤ t ≤ δ1T and δ1T ≤ t ≤ T , although it often requires
excessive calculation effort. However, a convenient approxi-
mation can be devised, considering λmax , the maximum of the
absolute values of all eigenvalues of A (usually λmax is related
to the cutoff frequency fc of an equivalent low-pass filter with
fc � 1/T ). For λmax T � 1, the exponential matrix (or state
transition matrix) eAt = I + At + A2t 2/2 + · · · + Ant n/n!,
where I is the identity or unity matrix, can be approxi-
mated by eAt ≈ I + At . Therefore, eA1δ1t · eA2(1−δ1)t ≈
I + [A1δ1 + A2(1 − δ1)]t . Hence, the solution over the period
T , for the system represented by Eq. (34.4), is found to be:

x (T ) ∼= e[A1δ1+A2(1−δ1)]T x1 (0)

+
∫ T

0
e[A1δ1+A2(1−δ1)](T−τ) [B1δ1 + B2 (1 − δ1)] udτ

(34.6)

This approximate response of Eq. (34.4) is identical to the
exact response obtained from the nonlinear continuous time-
invariant state-space model (34.7), supposing that the average
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FIGURE 34.1 (a) Basic circuit of the buck–boost dc/dc converter and (b) ideal waveforms.

values of x, denoted x̄, are the new state variables, and consid-
ering δ2 = 1 − δ1 . Moreover, if A1 A2 = A2 A1, the approxi-
mation is exact.

˙̄x = [A1δ1+A2δ2] x̄ + [B1δ1+B2δ2] ū

ȳ = [C1δ1+C2δ2] x̄ + [D1δ1+D2δ2] ū
(34.7)

For λmax T � 1, the model (34.7), often referred to as
the state-space averaged model, is also said to be obtained by
“averaging” Eq. (34.4) over one period, under small ripple and
slow variations, as the average of products is approximated by
products of the averages. Comparing Eq. (34.7) to Eq. (34.1),
the relations (34.8), defining the state-space averaged model,
are obtained.

A = [A1δ1 + A2δ2] ; B = [B1δ1 + B2δ2] ;

C = [C1δ1 + C2δ2] ; D = [D1δ1 + D2δ2]
(34.8)

EXAMPLE 34.1 State-space models for the buck–
boost dc/dc converter
Consider the simplified circuitry of the buck–boost con-
verter of Fig. 34.1 switching at fs = 20 kHz (T = 50 µs)
with VDCmax = 28 V, VDCmin = 22 V, Vo = 24 V,
Li = 400 µH, Co = 2700 µF, Ro = 2 �.

The differential equations governing the dynamics of
the state vector x = [iL , vo]T (T denotes the transpose
of vectors or matrices) are:

Li
diL
dt

= VDC

Co
dvo

dt
= − vo

Ro

for 0 ≤ t ≤ δ1T (δ (t ) = 1,
Q1 is on and D1 is off)

(34.9)

Li
diL
dt

= −vo

Co
dvo

dt
= iL − vo

Ro

for δ1T ≤ t ≤ T (δ (t ) = 1,
Q1 is off and D1 is on)

(34.10)
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Comparing Eqs. (34.9) and (34.10) to Eqs. (34.2)
and (34.3) and considering y = [vo , iL]T , the following
matrices can be identified:

A1 =
[

0 0
0 −1/(RoCo)

]
; A2 =

[
0 −1/Li

1/Co −1/(RoCo)

]
;

B1 = [1/Li , 0]T ; B2 = [0, 0]T ; u = [VDC ] ;

C1 =
[

0 1
1 0

]
; C2 =

[
0 1
1 0

]
;

D1 = [0, 0]T ; D2 = [0, 0]T

From Eqs. (34.4) and (34.5), the switched state-space
model of this switching converter is

[
i̇L
v̇o

]
=
[

0 − (1 − δ(t )
)

/Li(
1 − δ(t )

)
/Co −1/(RoCo)

] [
iL
vo

]

+
[
δ(t )/Li

0

]
VDC

[
vo

iL

]
=
[

0 1
1 0

] [
iL
vo

]
+
[

0
0

]
[VDC ]

(34.11)

Now, applying Eq. (34.7), Eqs. (34.12) and (34.13)
can be obtained:

[˙̄iL
˙̄vo

]
=
[[

0 0

0 −1/RoCo

]
δ1 +

[
0 −1/Li

1/Co −1/RoCo

]
δ2

]

×
[

īL

v̄o

]
+
[[

1/Li

0

]
δ1 +

[
0
0

]
δ2

] [
V̄DC

]

(34.12)

[
v̄o

īL

]
=
[[

0 1
1 0

]
δ1 +

[
0 1
1 0

]
δ2

] [
īL
v̄o

]

+
[[

0
0

]
δ1 +

[
0
0

]
δ2

] [
V̄DC

]
(34.13)

From Eqs. (34.12) and (34.13), the state-space aver-
aged model, written as a function of δ1, is

[˙̄iL
˙̄vo

]
=
[

0 −1−δ1/Li

1−δ1/Co −1/RoCo

][
īL

v̄o

]
+
[
δ1/Li

0

][
V̄DC

]

(34.14)
[

v̄o

īL

]
=
[

0 1

1 0

][
īL

v̄o

]
+
[

0

0

][
V̄DC

]
(34.15)

The eigenvalues sbb1,2 , or characteristic roots of A, are
the roots of |sI−A|. Therefore:

sbb1,2 = −1

2RoCo
±
√

1

4 (RoCo)
2 − (1 − δ1)

2

LiCo
(34.16)

Since λmax is the maximum of the absolute values of all the
eigenvalues of A, the model (34.14, 34.15) is valid for switching
frequencies fs (fs = 1/T ) that verify λmax T � 1. Therefore,
as T � 1/λmax , the values of T that approximately verify
this restriction are T � 1/max(|sbb1,2 |). Given this buck–boost
converter data, T � 2 ms is obtained. Therefore, the converter
switching frequency must obey fs � max(|sf 1,2|), implying
switching frequencies above, say, 5 kHz. Consequently, the
buck–boost switching frequency, the inductor value, and the
capacitor value were chosen accordingly.

This restriction can be further used to discuss the maximum
frequency ωmax for which the state-space averaged model is
still valid, given a certain switching frequency. As λmax can
be regarded as a frequency, the preceding constraint brings
ωmax � 2πfs , say ωmax < 2πfs /10, which means that the state-
space averaged model is a good approximation at frequencies
under one-tenth of the power converter switching frequency.

The state-space averaged model (34.14, 34.15) is also the
state-space model of the circuit represented in Fig. 34.2. Hence,
this circuit is often named “the averaged equivalent circuit”
of the buck–boost converter and allows the determination,
under small ripple and slow variations, of the average equiv-
alent circuit of the converter switching cell (power transistor
plus diode).

The average equivalent circuit of the switching cell
(Fig. 34.3a) is represented in Fig. 34.3b and emerges directly
from the state-space averaged model (34.14, 34.15). This
equivalent circuit can be viewed as the model of an “ideal
transformer” (Fig. 34.3c), whose primary to secondary ratio
(v1/v2) can be calculated applying Kirchhoff ’s voltage law to
obtain −v1 + vs − v2 = 0. As v2 = δ1vs , it follows that
v1 = vs(1 − δ1), giving (v1/v2) = (1 − δ1)/δ1. The same ratio
could be obtained beginning with iL = i1 + i2, and i1 = δ1iL
(Fig. 34.3b) which gives i2 = iL(1 − δ1) and (i2/i1) = δ2/δ1.

The average equivalent circuit concept, obtained from
Eq. (34.7) or Eqs. (34.14) and (34.15), can be applied to
other switching converters, with or without a similar switch-
ing cell, to obtain transfer functions or to computer simulate

δ1iL

Li
C0

v0
R0

iL

δ1(VDC +v0)

+

+

−

− VDC

+ −

FIGURE 34.2 Equivalent circuit of the averaged state-space model of
the buck–boost converter.
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FIGURE 34.3 Average equivalent circuit of the switching cell; (a) switching cell; (b) average equivalent circuit and (c) average equivalent circuit
using an ideal transformer.

the converter average behavior. The average equivalent circuit
of the switching cell can be applied to converters with the
same switching cell operating in the continuous conduction
mode. However, note that the state variables of Eq. (34.7)
or Eqs. (34.14) and (34.15) are the mean values of the con-
verter instantaneous variables and, therefore, do not represent
their ripple components. The inputs of the state-space aver-
aged model are the mean values of the converter inputs over
one switching period.

34.2.2.3 Linearized State-space Averaged Model
Since the converter outputs ȳ must be regulated actuating
on the duty cycle δ(t ), and the converter inputs ū usually
present perturbations due to the load and power supply varia-
tions. State variables are decomposed in small ac perturbations
(denoted by “∼”) and dc steady-state quantities (represented
by uppercase letters). Therefore:

x̄ = X + x̃

ȳ = Y + ỹ

ū = U + ũ

δ1 = �1 + δ̃

δ2 = �2 − δ̃

(34.17)

Using Eq. (34.17) in Eq. (34.7) and rearranging terms, we
obtain:

˙̃x = [A1�1 +A2�2] X+[B1�1 +B2�2] U

+[A1�1 +A2�2] x̃+[(A1 −A2)X+(B1 −B2)U] δ̃

+[B1�1 +B2�2] ũ+[(A1 −A2) x̃+(B1 −B2) ũ]δ̃
(34.18)

Y+ ỹ = [C1�1 +C2�2] X+[D1�1 +D2�2] U

+[C1�1 +C2�2] x̃+[(C1 −C2)X+(D1 −D2)U] δ̃

+[D1�1 +D2�2] ũ+[(C1 −C2) x̃+(D1 −D2) ũ]δ̃
(34.19)

The terms [A1�1 + A2�2] X + [B1�1 + B2�2] U and
[C1�1 + C2�2] X + [D1�1 + D2�2] U, respectively from
Eqs. (34.18) and (34.19), represent the steady-state behav-
ior of the system. As in steady state Ẋ = 0, the following
relationships hold:

0 = [A1�1 + A2�2] X + [B1�1 + B2�2] U (34.20)

Y = [C1�1 + C2�2] X + [D1�1 + D2�2] U (34.21)

Neglecting higher order terms ([(A1 − A2) x̃ + (B1 − B2) ũ]
δ̃ ≈ 0) of Eqs. (34.18) and (34.19), the linearized small-signal
state-space averaged model is

˙̃x = [A1�1 + A2�2] x̃ + [(A1 − A2) X + (B1 − B2) U] δ̃

+ [B1�1 + B2�2] ũ

ỹ = [C1�1 + C2�2] x̃ + [(C1 − C2) X + (D1 − D2) U] δ̃

+ [D1�1 + D2�2] ũ
(34.22)

or

˙̃x = Aav x̃ + Bav ũ + [(A1 − A2) X + (B1 − B2) U] δ̃

ỹ = Cav x̃ + Dav ũ + [(C1 − C2) X + (D1 − D2) U] δ̃

(34.23)

with

Aav = [A1�1 + A2�2]

Bav = [B1�1 + B2�2]

Cav = [C1�1 + C2�2]

Dav = [D1�1 + D2�2]

(34.24)

34.2.3 Converter Transfer Functions

Using Eq. (34.20) in Eq. (34.21), the input U to output
Y steady-state relations (34.25), needed for open-loop and
feedforward control, can be obtained.
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Y

U
= −Cav A−1

av Bav + Dav (34.25)

Applying Laplace transforms to Eq. (34.23) with zero initial
conditions, and using the superposition theorem, the small-
signal duty-cycle δ̃ to output ỹ transfer functions (34.26) can
be obtained considering zero line perturbations (ũ = 0).

ỹ(s)

δ̃(s)
= Cav [sI − Aav ]−1 [(A1 − A2) X + (B1 − B2) U]

+ [(C1 − C2) X + (D1 − D2) U] (34.26)

The line to output transfer function (or audio susceptibility
transfer function) (34.27) is derived using the same method,
considering now zero small-signal duty-cycle perturbations
(δ̃ = 0).

ỹ(s)

ũ(s)
= Cav [sI − Aav ]−1 Bav + Dav (34.27)

EXAMPLE 34.2 Buck–boost dc/dc converter transfer
functions
From Eqs. (34.14) and (34.15) of Example 34.1 and
Eq. (34.23), making X = [IL , Vo]T , Y = [Vo , IL]T ,
and U = [VDC ], the linearized state-space model of the
buck–boost converter is

[˙̃iL
˙̃vo

]
=
[

0 −1−�1/Li

1−�1/Co −1/RoCo

][
ĩL
ṽo

]
+
[
�1/Li

0

]
[ṽDC ]

+
[

0 δ̃/Li

−δ̃/Co 0

][
IL

Vo

]
+
[

VDC /Li

0

]
[δ̃]

[
ṽo

ĩL

]
=
[

0 1

1 0

][
ĩL
ṽo

]
+
[

0

0

]
[ṽDC ]

(34.28)

From Eqs. (34.24) and (34.28), the following matrices
are identified:

Aav =
[

0 −(1 − �1)/Li

1 − �1/Co −1/RoCo

]
; Bav =

[
�1/Li

0

]
;

Cav =
[

0 1

1 0

]
; Dav =

[
0

0

]

(34.29)

The averaged linear equivalent circuit, resulting from
Eq. (34.28) or from the linearization of the averaged
equivalent circuit (Fig. 34.2) derived from Eqs. (34.14)
and (34.15), now includes the small-signal current
source δ̃IL in parallel with the current source �1 ĩL , and

the small-signal voltage source δ̃ (VDC + Vo) in series
with the voltage source �1(ṽdc + ṽo). The supply voltage
source V̄DC is replaced by the voltage source ṽDC .

Using Eq. (34.29) in Eq. (34.25), the input U to output
Y steady-state relations are:

IL

VDC
= �1

Ro (�1 − 1)2 (34.30)

Vo

VDC
= �1

1 − �1
(34.31)

These relations are the well-known steady-state trans-
fer relationships of the buck–boost converter [2, 5, 6].
For open-loop control of the Vo output, knowing the
nominal value of the power supply VDC and the required
Vo , the value of �1 can be off-line calculated from
Eq. (34.31) (�1 = Vo/(Vo + VDC )). A modulator such
as that described in Section 34.2.4, with the modula-
tion signal proportional to �1, would generate the signal
δ(t ). The open-loop control for fixed output voltages is
possible, if the power supply VDC is almost constant
and the converter load does not change significantly. If
the VDC value presents disturbances, then the feedfor-
ward control can be used, calculating �1 on-line, so that
its value will always be in accordance with Eq. (34.31).
The correct Vo value will be attained at steady state,
despite input-voltage variations. However, because of
converter parasitic reactances, not modeled here (see
Example 34.3), in practice a steady-state error would
appear. Moreover, the transient dynamics imposed by
the converter would present overshoots, being often not
suited for demanding applications.

From Eq. (34.27), the line to output transfer functions
are:

ĩL(s)

ṽDC (s)
= �1 (1 + sCoRo)

s2LiCoRo + sLi + Ro (1 − �1)
2 (34.32)

ṽo(s)

ṽDC (s)
= Ro�1 (1 − �1)

s2LiCoRo + sLi + Ro (1 − �1)
2 (34.33)

From Eq. (34.26), the small-signal duty-cycle δ̃ to
output ỹ transfer functions are:

ĩL(s)

δ̃(s)
= VDC (1 + �1 + sCoRo)/(1 − �1)

s2LiCoRo + sLi + Ro (1 − �1)
2 (34.34)

ṽo(s)

δ̃(s)
= VDC

(
Ro − sLi�1

/
(1 − �1)

2
)

s2LiCoRo + sLi + Ro (1 − �1)
2 (34.35)

These transfer functions enable the choice and
feedback-loop design of the compensation network.
Note the positive zero in ṽo(s)/δ̃(s), pointing out a
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FIGURE 34.4 (a) Basic circuit of the forward dc/dc converter and (b) circuit main waveforms.

nonminimum-phase system. These equations could also
be obtained using the small-signal equivalent circuit
derived from Eq. (34.28), or from the linearized model
of the switching cell Fig. 34.3b, substituting the current
source δ1 īL by the current sources �1 ĩL and δ̃IL in par-
allel, and the voltage source δ1v̄s by the voltage sources
�1
(
ṽDC + ṽo

)
and δ̃ (VDC + Vo) in series.

EXAMPLE 34.3 Transfer functions of the forward
dc/dc converter
Consider the forward (buck derived) converter of
Fig. 34.4 switching at fs = 100 kHz (T = 10 µs) with
VDC = 300 V, n = 30, Vo = 5 V, Li = 20 µH,
rL = 0.01 �, Co = 2200 µF, rC = 0.005 �, Ro = 0.1 �.

Assuming x = [iL , vC ]T , δ(t ) = 1 when both Q1, D1

are on and D2 is off (0 ≤ t ≤ δ1T ), δ(t ) = 0 when both
Q1, D1 are off and D2 is on (δ1T ≤ t ≤ T ), the switched
state-space model of the forward converter, considering
as output vector y = [iL , vo]T , is

diL
dt

= − (RorC + RorL + rLrC )

Li (Ro + rC )
iL

− Ro

Li (Ro + rC )
vc + δ (t )

n
VDC

dvC

dt
= Ro

(Ro + rC ) Co
iL − 1

(Ro + rC ) Co
vC

vo = rC

1 + rC /Ro
iL + 1

1 + rC /Ro
vC

(34.36)

Making rcm = rC /(1 + rC /Ro), Roc = Ro + rC , koc =
Ro/Roc , rP = rL + rcm and comparing Eq. (34.36) to
Eqs. (34.2) and (34.3), the following matrices can be
identified:

A1 = A2 =
[−rP /Li −koc /Li

koc /Co −1/ (Roc Co)

]
;

B1 = [1/ (nLi) , 0]T ; B2 = [0, 0]T ; u = [VDC ]

C1 = C2 =
[

1 0
rcm koc

]
; D1 = D2 = [0, 0]T

Now, applying Eq. (34.7), the exact (since A1 = A2)
state-space averaged model (34.37, 34.38) is obtained:

[ ˙̄iL˙̄vC

]
=
[−rP /Li −koc /Li

koc /Co −1/(Roc Co)

] [
īL
v̄C

]
+
[

δ1
nLi

0

] [
V̄DC

]

(34.37)

[
īL
v̄o

]
=
[

1 0
rcm koc

] [
īL
v̄o

]
+
[

0
0

] [
V̄DC

]
(34.38)

Since A1 = A2, this model is valid for ωmax < 2πfs .
The converter eigenvalues sf1,2 , are:

sf1,2 = − Li+CoRoc rP ±
√

−4Roc Li Co(Roc k2
oc +rP)+(Li+CoRoc rP )2

2Roc Li Co

(34.39)

The equivalent circuit arising from Eqs. (34.37) and
(34.38) is represented in Fig. 34.5. It could also be
obtained with the concept of the switching cell equiv-
alent circuit Fig. 34.3 of Example (34.1).

Making X = [IL , VC ]T , Y = [IL , Vo]T and U =
[VDC ], from Eq. (34.23) the small-signal state-space
averaged model is

[ ˙̃iL˙̃vC

]
=
[−rP /Li −koc /Li

koc /Co −1/(Roc Co)

] [
ĩL
ṽC

]

+
[
�1/nLi

0

]
[ṽDC ] +

[
VDC /nLi

0

] [
δ̃
]

(34.40)

[
ĩL
ṽo

]
=
[

1 0
rcm koc

] [
ĩL
ṽC

]
+
[

0
0

]
[ṽDC ] (34.41)
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FIGURE 34.5 Equivalent circuit of the averaged state-space model of
the forward converter.
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From Eq. (34.25), the input U to output Y steady-state
relations are:

IL

VDC
= �1

n
(
k2

oc Roc + rP
) (34.42)

Vo

VDC
= �1

(
k2

oc Roc + rcm
)

n
(
k2

oc Roc + rP
) (34.43)

Making rC = 0, rL = 0 and n = 1, the former rela-
tions give the well-known dc transfer relationships of the
buck dc/dc converter. Relations (34.42, 34.43) allow the
open-loop and feedforward control of the converter, as
discussed in Example 34.2, provided that all the modeled
parameters are time-invariant and accurate enough.

From Eq. (34.27), the line to output transfer functions
are derived:

ĩL(s)

ṽDC (s)
= (�1/n) (1 + sCoRoc )

s2LiCoRoc + s (Li + CoRoc rP ) + k2
oc Roc + rP

(34.44)

ṽo(s)

ṽDC (s)
= (�1/n)

(
k2

oc Roc + rcm + sCoRoc rcm
)

s2LiCoRoc + s (Li + CoRoc rP ) + k2
oc Roc + rP

(34.45)

Using Eq. (34.26), the small-signal duty-cycle δ̃ to
output ỹ transfer functions are:

ĩL(s)

δ(s)
= (VDC /n) (1 + sCoRoc )

s2LiCoRoc + s (Li + CoRoc rP ) + k2
oc Roc + rP

(34.46)

ṽo(s)

δ(s)
= (VDC /n)

(
k2

oc Roc + rcm + sCoRoc rcm
)

s2LiCoRoc + s (Li + CoRoc rP ) + k2
oc Roc + rP

(34.47)

The real zero of Eq. (34.47) is due to rC , the equiv-
alent series resistance (ESR) of the output capacitor. A
similar zero would occur in the buck–boost converter
(Example 34.2), if the ESR of the output capacitor had
been included in the modeling.

34.2.4 Pulse Width Modulator Transfer
Functions

In what is often referred to as the pulse width modulation
(PWM) voltage mode control, the output voltage uc (t ) of the

error (between desired and actual output) amplifier plus reg-
ulator, processed if needed, is compared to a repetitive or
carrier waveform r(t ), to obtain the switching variable δ(t )
(Fig. 34.6a). This function controls the power switch, turning
it on at the beginning of the period and turning it off when
the ramp exceeds the uc (t ) voltage. In Fig. 34.6b the opposite
occurs (turn-off at the end of the period, turn-on when the
uc (t ) voltage exceeds the ramp).

Considering r(t ) as represented in Fig. 34.6a (r(t ) =
ucmax t /T ), δk is obtained equating r(t ) = uc giving δk =
uc (t )/ucmax or δk /uc (t ) = GM (GM =1/ucmax ). In Fig. 34.6b,
the switching-on angle αk is obtained from r(t ) = ucmax −
2ucmaxωt /π, uc (t ) = ucmax −2ucmax αk /π, giving αk = (π/2)×
(1 − uc /ucmax ) and GM = ∂αk /∂uc = −π/(2ucmax ).

Since, after turn-off or turn-on, any control action variation
of uc (t ) will only affect the converter duty cycle in the next
period, a time delay is introduced in the control loop. For sim-
plicity, with small-signal perturbations around the operating
point, this delay is assumed almost constant and equal to its
mean value (T /2). Then, the transfer function of the PWM

(b)

ucmax

−ucmax

α1 π+α2

2πππ/2

δ(t)

uc(t)

ωt

ωt

r(t)

1
0

(a)

ucmax

δ1T T+δ2T
T

T 2T 3T 4T t

r(t) uc(t)

2T 3T 4T t
2T+δ3T 3T+δ4T

1

0

δ(t)

FIGURE 34.6 Waveforms of pulse width modulators showing the vari-
able time delays of the modulator response: (a) r(t ) = ucmax t /T and
(b) r(t ) = ucmax − 2ucmaxωt /π.
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modulator is

δ̃(s)

ũc (s)
= GM e−sT /2 = GM

es(T /2)

= GM

1 + s T
2 + s2

2!
(

T
2

)2 + · · · + sj

j!
(

T
2

)2 + · · ·
≈ GM

1 + s T
2

(34.48)

The final approximation of Eq. (34.48), valid for ωT /2 <√
2/2, [7] suggests that the PWM modulator can be considered

as an amplifier with gain GM and a dominant pole. Notice
that this pole occurs at a frequency doubling the switching
frequency, and most state-space averaged models are valid
only for frequencies below one-tenth of the switching fre-
quency. Therefore, in most situations this modulator pole can
be neglected, being simply δ(s) = GM uc (s), as the dominant
pole of Eq. (34.48) stays at least one decade to the left of the
dominant poles of the converter.

34.2.5 Linear Feedback Design Ensuring
Stability

In the application of classical linear feedback control to switch-
ing converters, Bode plots and root locus are, usually, suitable
methods to assess system performance and stability. General
rules for the design of the compensated open-loop transfer
function are as follows:

(i) The low-frequency gain should be high enough to
minimize output steady-state errors;

(ii) The frequency of 0 dB gain (unity gain), ω0dB , should
be placed close to the maximum allowed by the mod-
eling approximations (λmax T � 1), to allow fast
response to transients. In practice, this frequency
should be almost an order of magnitude lower than
the switching frequency;

(iii) To ensure stability, the phase margin, defined as
the additional phase shift needed to render the sys-
tem unstable without gain changes (or the difference
between the open-loop system phase at ω0dB and
−180◦), must be positive and in general greater than
30◦ (45◦−70◦ is desirable). In the root locus, no poles
should enter the right-half of the complex plane;

(iv) To increase stability, the gain should be less than
−30 dB at the frequency where the phase reaches
−180◦ (gain margin greater than 30 dB).

Transient behavior and stability margins are related: the
obtained damping factor is generally 0.01 times the phase
margin (in degrees), and overshoot (in percent) is given
approximately by 75◦ minus the phase margin. The product
of the rise time (in seconds) and the closed-loop bandwidth
(in rad/s) is close to 2.8.

To guarantee gain and phase margins, the following series
compensation transfer functions (usually implemented with
operational amplifiers) are often used [8]:

34.2.5.1 Types of Compensation
Lag or lead compensation
Lag compensation should be used in converters with good sta-
bility margin but poor steady-state accuracy. If the frequencies
1/Tp and 1/Tz of Eq. (34.49) with 1/Tp < 1/Tz are chosen well
below the unity gain frequency, lag–lead compensation low-
ers the loop gain at high frequency but maintains the phase
unchanged for ω � 1/Tz . Then, the dc gain can be increased to
reduce the steady-state error without significantly decreasing
the phase margin.

CLL(s) = kLL
1 + sTz

1 + sTp
= kLL

Tz

Tp

s + 1/Tz

s + 1/Tp
(34.49)

Lead compensation can be used in converters with good
steady-state accuracy but poor stability margin. If the fre-
quencies 1/Tp and 1/Tz of Eq. (34.49) with 1/Tp > 1/Tz are
chosen below the unity gain frequency, lead–lag compensa-
tion increases the phase margin without significantly affecting
the steady-state error. The Tp and Tz values are chosen to
increase the phase margin, fastening the transient response
and increasing the bandwidth.

Proportional–Integral compensation
Proportional–integral (PI) compensators (34.50) are used to
guarantee null steady-state error with acceptable rise times.
The PI compensators are a particular case of lag–lead com-
pensators, therefore suitable for converters with good stability
margin but poor steady-state accuracy.

CPI (s) = 1 + sTz

sTp
= Tz

Tp
+ 1

sTp
= Kp + Ki

s
= Kp

(
1 + Ki

Kps

)

= Kp

(
1 + 1

sTz

)
= 1 + sTz

sTz /Kp
(34.50)

Proportional–Integral plus high-frequency pole
compensation
This integral plus zero-pole compensation (34.51) combines
the advantages of a PI with lead or lag compensation. It
can be used in converters with good stability margin but
poor steady-state accuracy. If the frequencies 1/TM and 1/Tz

(1/Tz < 1/TM ) are carefully chosen, compensation lowers the
loop gain at high frequency, while only slightly lowering the
phase to achieve the desired phase margin.

CILD(s) = 1 + sTz

sTp (1 + sTM )
= Tz

TpTM

s + 1/Tz

s (s + 1/TM )

= Wcp
s + ωz

s (s + ωM )
(34.51)
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Proportional–Integral derivative (PID), plus high-frequency
poles
The PID notch filter type (34.52) scheme is used in convert-
ers with two lightly damped complex poles, to increase the
response speed, while ensuring zero steady-state error. In most
switching converters, the two complex zeros are selected to
have a damping factor greater than the converter complex
poles and slightly smaller oscillating frequency. The high-
frequency pole is placed to achieve the needed phase margin
[9]. The design is correct if the complex pole loci, heading to
the complex zeros in the system root locus, never enter the
right half-plane.

CPIDnf (s) = Tcp

s2 + 2ξcpω0cps + ω2
0cp

s
(
1 + s/ωp1

)

= Tcps

1 + s/ωp1
+ 2Tcpξcpω0cp

1 + s/ωp1
+ Tcpω

2
0cp

s
(
1 + s/ωp1

)

= Tcps

1 + s/ωp1
+ Tcpω

2
0pc

(
1 + 2sξcp/ω0cp

)
s
(
1 + s/ωp1

) (34.52)

For systems with a high-frequency zero placed at least one
decade above the two lightly damped complex poles, the com-
pensator (34.53), with ωz1 ≈ ωz2 < ωp , can be used. Usually,
the two real zeros present frequencies slightly lower than the
frequency of the converter complex poles. The two high-
frequency poles are placed to obtain the desired phase margin
[9]. The obtained overall performance will often be inferior to
that of the PID type notch filter.

CPID(s) = Wcp
(1 + s/ωz1) (1 + s/ωz2)

s
(
1 + s/ωp

)2 (34.53)

34.2.5.2 Compensator Selection and Design
The procedure to select the compensator and to design its
parameters can be outlined as follows:

1. Compensator selection: In general, since VDC per-
turbations exist, null steady-state error guarantee is
needed. High-frequency poles are usually necessary, if
the transfer function shows a −6 dB/octave roll-off due
to high frequency left plane zeros. Therefore, in gen-
eral, two types of compensation schemes with integral
action (34.51 or 34.50), and (34.52 or 34.53) can be
tried. Compensator (34.52) is usually convenient for
systems with lightly damped complex poles;

2. Unity gain frequency ω0dB choice:

• If the selected compensator has no complex zeros,
it is better to be conservative, choosing ω0dB

well below the frequency of the lightly damped
poles of the converter (or the frequency of the
right half plane zeros is lower). However, because
of the resonant peak of most converter transfer

functions, the phase margin can be obtained at a
frequency near the resonance. If the phase mar-
gin is not enough, the compensator gain must be
lowered;

• If the selected compensator has complex zeros,
ω0dB can be chosen slightly above the frequency
of the lightly damped poles;

3. Desired phase margin (φM ) specification φM ≥ 30◦
(preferably between 45◦ and 70◦);

4. Compensator zero-pole placement to achieve the
desired phase margin:

• With the integral plus zero-pole compensation
type (34.51), the compensator phase φcp , at the
maximum frequency of unity gain (often ω0dB),
equals the phase margin (φM ) minus 180◦ and
minus the converter phase φcv , (φcp = φM −180◦−
φcv ). The zero-pole position can be obtained cal-
culating the factor fct = tg (π/2 + φcp/2) being
ωz = ω0dB/fct and ωM = ω0dBfct .

• With the PID notch filter type (34.52) controller,
the two complex zeros are placed to have a damp-
ing factor equal to two times the damping of
the converter complex poles, and oscillating fre-
quency ω0cp 30% smaller. The high-frequency pole
ωp1 is placed to achieve the needed phase margin
(ωp1 ≈ (ω0cp ·ω0dB)1/2f 2

ct with fct = tg (π/2+φcp/2)
and φcp = φM − 180◦ − φcv [5]).

5. Compensator gain calculation (the product of the con-
verter and compensator gains at the ω0dB frequency
must be one).

6. Stability margins verification using Bode plots and root
locus.

7. Results evaluation. Restarting the compensator selec-
tion and design, if the attained results are still not good
enough.

34.2.6 Examples: Buck–boost DC/DC
Converter, Forward DC/DC Converter,
12 Pulse Rectifiers, Buck–boost DC/DC
Converter in the Discontinuous Mode
(Voltage and Current Mode), Three-phase
PWM Inverters

EXAMPLE 34.4 Feedback design for the buck–boost
dc/dc converter
Consider the converter output voltage vo (Fig. 34.1)
to be the controlled output. From Example 34.2 and
Eqs. (34.33) and (34.35), the block diagram of Fig. 34.7 is
obtained. The modulator transfer function is considered
a pure gain (GM = 0.1). The magnitude and phase of the
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voref CP(S)

uc Modulator
VDC s2LiC0R0 +

 sLi +
 R0 (1 _ ∆1)2

R0 ∆1(1 _ ∆1)

VDC

v01
R0 

_ sLi ∆1 (1 _ ∆1)2

δ

++ +
+

+
−

( )

FIGURE 34.7 Block diagram of the linearized model of the closed loop buck–boost converter.
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FIGURE 34.8 Bode plots for the buck–boost converter. Trace 1 – switching converter magnitude and phase; trace 2 – compensator magnitude and
phase; trace 3 – resulting magnitude and phase of the compensated converter: (a) PI plus high-frequency pole compensation with 60◦ phase margin,
ω0dB = 500 rad/s and (b) PID notch filter compensation with 65◦ phase margin, ω0dB = 1000 rad/s.

open-loop transfer function vo/uc (Fig. 34.8a trace 1),
shows a resonant peak due to the two lightly damped
complex poles and the associated −12 dB/octave roll-
off. The right half-plane zero changes the roll-off to
−6 dB/octave and adds −90◦ to the converter phase
(nonminimum-phase converter).

Compensator selection. As VDC perturbations exist null
steady-state error guarantee is needed. High-frequency
poles are needed given the −6 dB/octave final slope
of the transfer function. Therefore, two compensation
schemes (34.51 and 34.52) with integral action are tried
here. The buck–boost converter controlled with integral
plus zero-pole compensation presents, in closed-loop,
two complex poles closer to the imaginary axes than
in open-loop. These poles should not dominate the con-
verter dynamics. Instead, the real pole resulting from the
open-loop pole placed at the origin should be almost
the dominant one, thus slightly lowering the calcu-
lated compensator gain. If the ω0dB frequency is chosen
too low, the integral plus zero-pole compensation turns
into a pure integral compensator (ωz = ωM = ω0dB).

However, the obtained gains are too low, leading to very
slow transient responses.

Results showing the transient responses to voref and
VDC step changes, using the selected compensators and
converter Bode plots (Fig. 34.8), are shown (Fig. 34.9).
The compensated real converter transient behavior
occurs in the buck and in the boost regions. Notice the
nonminimum-phase behavior of the converter (mainly
in Fig. 34.9b), the superior performance of the PID
notch filter compensator and the unacceptable behav-
ior of the PI with high-frequency pole. Care should be
taken with load changes, when using this compensator,
since instability can easily occur.

The compensator critical values, obtained with the
root-locus studies, are Wcpcrit = 700 s−1 for the integral
plus zero-pole compensator, Tcpcrit = 0.0012 s for the
PID notch filter, and WIcpcrit = 18 s−1 for the integral
compensation derived from the integral plus zero-pole
compensator (ωz = ωM ). This confirms the Bode-plot
design and allows stability estimation with changing
loads and power supply.
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FIGURE 34.9 Transient responses of the compensated buck–boost converter. At t = 0.005 s, voref step from 23 to 26 V. At t = 0.02 s, VDC step
from 26 to 23 V. Top graphs: step reference voref and output voltage vo . Bottom graphs: trace starting at 20 is iL current; trace starting at zero is
10 × (voref − vo): (a) PI plus high-frequency pole compensation with 60◦ phase margin and ω0dB = 500 rad/s and (b) PID notch filter compensation
with 64◦ phase margin and ω0dB = 1000 rad/s.

EXAMPLE 34.5 Feedback design for the forward
dc/dc converter.
Consider the output voltage vo of the forward converter
(Fig. 34.4a) to be the controlled output. From Example
34.3 and Eqs. (34.45) and (34.47), the block diagram of
Fig. 34.10 is obtained. As in Example 34.4, the mod-
ulator transfer function is considered as a pure gain
(GM = 0.1). The magnitude and phase of the open-loop
transfer function vo/uc (Fig. 34.11a, trace 1), shows an
open-loop stable system. Since integral action is needed
to have some disturbance rejection of the voltage source
VDC , the compensation schemes used in Example 34.4,
obtained using the same procedure (Fig. 34.11), were
also tested.

Results, showing the transient responses to voref and
VDC step changes, are shown (Fig. 34.12). Both com-
pensators (34.51) and (34.52) are easier to design than
the ones for the buck–boost converter, and both have
acceptable performances. Moreover, the PID notch filter
presents a much faster response.

Alternatively, a PID feedback controller such as
Eq. (34.53) can be easily hand-adjusted, starting with
the proportional, integral, and derivative gains all set to
zero. In the first step, the proportional gain is increased
until the output presents an oscillatory response with
nearly 50% overshoot. Next, the derivative gain is slowly
increased until the overshoot is eliminated. Finally, the
integral gain is increased to eliminate the steady-state
error as quickly as possible.

EXAMPLE 34.6 Feedback design for phase controlled
rectifiers in the continuous mode
Phase controlled, p pulse (p > 1), thyristor recti-
fiers (Fig. 34.13a), operating in the continuous mode,

present an output voltage with p identical segments
within the mains period T . Given this cyclic waveform,
the A, B, C, and D matrices for all these p inter-
vals can be written with the same form, inspite of the
topological variation. Hence, the state-space averaged
model is obtained simply by averaging all the variables
within the period T /p. Assuming small variations, the
mean value of the rectifier output voltage UDC can be
written [10]:

UDC = Up
p

π
sin

(
π

p

)
cos α (34.54)

where α is the triggering angle of the thyristors, and Up

the maximum peak value of the rectifier output voltage,
determined by the rectifier topology and the ac sup-
ply voltage. The α value can be obtained (α = (π/2) ×
(1−uc /ucmax )) using the modulator of Fig. 34.6b, where
ω = 2π/T is the mains frequency. From Eq. (34.54),
the incremental gain KR of the modulator plus rectifier
yields:

KR = ∂UDC

∂uc

= Up
p

2ucmax
sin

(
π

p

)
cos

(
πuc

2ucmax

)
(34.55)

For a given rectifier, this gain depends on uc , and
should be calculated for a certain quiescent point. How-
ever, for feedback design purposes, keeping in mind that
the rectifier could be required to be stable in all operating
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FIGURE 34.10 Block diagram of the linearized model of the closed-loop controlled forward converter.
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FIGURE 34.13 (a) Block diagram of a p pulse phase controlled rectifier feeding a separately excited dc motor and (b) equivalent averaged circuit.

points, the maximum value of KR , denoted KRM , can
be used:

KRM = Up
p

2ucmax
sin

(
π

p

)
(34.56)

The operation of the modulator, coupled to the recti-
fier thyristors, introduces a non-neglectable time delay,
with mean value T /2p. Therefore, from Eq. (34.48) the
modulator-rectifier transfer function GR(s) is

GR(s) = UDC (s)

uc (s)

= KRM e−s(T /2p) ≈ KRM

1 + s
(
T /2p

) (34.57)

Considering zero Up perturbations, the rectifier
equivalent averaged circuit (Fig. 34.13b) includes the
loss-free rectifier output resistance Ri , due to the overlap
in the commutation phenomenon caused by the mains
inductance. Usually, Ri ≈ pωl/π where l is the equiva-
lent inductance of the lines paralleled during the overlap,
half of the line inductance for most rectifiers, except for
single-phase bridge rectifiers where l is the line induc-
tance. Here, Lo is the smoothing reactor and Rm , Lm ,
and Eo are respectively the armature internal resistance,
inductance, and back electromotive force of a separately
excited dc motor (typical load). Assuming the mean

+
+ +

+−

−ioref

sTp Rt (1 + sTt)

uc

io

Eo

UDC
KRM

T
2p

1 + sTz 1

kI

1 + s
kI io

kI

FIGURE 34.14 Block diagram of a PI controlled p pulse rectifier.

value of the output current as the controlled output,
making Lt = Lo + Lm , Rt = Ri + Rm , Tt = Lt /Rt

and applying Laplace transforms to the differential equa-
tion obtained from the circuit of Fig. 34.13b, the output
current transfer function is

io (s)

UDC (s) − Eo (s)
= 1

Rt (1 + sTt )
(34.58)

The rectifier and load are now represented by a per-
turbed (Eo) second-order system (Fig. 34.14). To achieve
zero steady-state error, which ensures steady-state insen-
sitivity to the perturbations, and to obtain closed-loop
second-order dynamics, a PI controller (34.50) was
selected for Cp(s) (Fig. 34.14). Canceling the load pole
(−1/Tt ) with the PI zero (−1/Tz ) yields:

Tz = Lt /Rt (34.59)

The rectifier closed-loop transfer function io(s)/ioref (s),
with zero Eo perturbations, is

io(s)

ioref (s)
= 2pKRM kI /

(
Rt TpT

)
s2 + (

2p/T
)

s + 2pKRM kI /
(
Rt TpT

) (34.60)

The final value theorem enables the verification of the
zero steady-state error. Comparing the denominator of



[15:56 5/9/2006 Chapter-34.tex] RASHID: Power Electronics Handbook, 2e Page: 949 935–998

34 Control Methods for Switching Power Converters 949

Eq. (34.60) to the second-order polynomial s2 +2ζωns+
ω2

n yields:

ω2
n = 2pKRM kI /

(
Rt TpT

)

4ζ2ω2
n = (

2p/T
)2

(34.61)

Since only one degree of freedom is available (Tp),

the damping factor ζ is imposed. Usually ζ = √
2/2

is selected, since it often gives the best compromise
between response speed and overshoot. Therefore, from
Eq. (34.61), Eq. (34.62) arises:

Tp = 4ζ2KRM kI T /
(
2pRt

) = KRM kI T /
(
pRt

)
(34.62)

Note that both Tz (34.59) and Tp (34.62) are depen-
dent upon circuit parameters. They will have the correct
values only for dc motors with parameters closed to the
nominal load value. Using Eq. (34.62) in Eq. (34.60)
yields Eq. (34.63), the second-order closed-loop transfer
function of the rectifier, showing that, with loads close
to the nominal value, the rectifier dynamics depend only
on the mean delay time T /2p.

io(s)

ioref (s)
= 1

2
(
T /2p

)2
s2 + sT /p + 1

(34.63)

From Eq. (34.63) ωn = √
2p/T results, which is the

maximum frequency allowed by ωT /2p <
√

2/2, the
validity limit of Eq. (34.48). This implies that ζ ≥ √

2/2,
which confirms the preceding choice. For Up = 300 V,
p = 6, T = 20 ms, l = 0.8 mH, Rm = 0.5 �,
Lt = 50 mH, Eo = −150 V, ucmax = 10 V, kI = 0.1,
Fig. 34.15a shows the rectifier output voltage uoN (uoN =
uo/Up) and the step response of the output current
ioN (ioN = io/40) in accordance with Eq. (34.63). Notice

1
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FIGURE 34.15 Transient response of the compensated rectifier: (a) Step response of the controlled current io and (b) The current io response to a
step chance to 50% of the Eo nominal value during 1.5 T.

that the rectifier is operating in the inverter mode.
Fig. 34.15b shows the effect, in the io current, of a 50%
reduction in the Eo value. The output current is initially
disturbed but the error vanishes rapidly with time.

This modeling and compensator design are valid for
small perturbations. For large perturbations either the
rectifier will saturate or the firing angles will originate
large current overshoots. For large signals, antiwindup
schemes (Fig. 34.16a) or error ramp limiters (or soft
starters) and limiters of the PI integral component
(Fig. 34.16b) must be used. These solutions will also
work with other switching converters.

To use this rectifier current controller as the inner
control loop of a cascaded controller for the dc motor
speed regulation, a useful first-order approximation of
Eq. (34.63) is io(s)/ioref (s) ≈ 1/(sT /p + 1).

Although allowing a straightforward compensator
selection and precise calculation of its parameters,
the rectifier modeling presented here is not suited
for stability studies. The rectifier root locus will con-
tain two complex conjugate poles in branches par-
allel to the imaginary axis. To study the current
controller stability, at least the second-order term
of Eq. (34.48) in Eq. (34.57) is needed. Alterna-
tive ways include the first-order Padé approximation
of e−sT /2p , e−sT /2p ≈ (1 − sT/4p)/(1 + sT/4p), or
the second-order approximation, e−sT /2p ≈ (1 −
sT/4p + (sT/2p)2/12)/(1 + sT/4p + (sT/2p)2/12). These
approaches introduce zeros in the right half-plane
(nonminimum-phase systems), and/or extra poles, giv-
ing more realistic results. Taking a first-order approxi-
mation and root-locus techniques, it is found that the
rectifier is stable for Tp > KRM kI T /(4pRt ) (ζ > 0.25).
Another approach uses the conditions of magnitude
and angle of the delay function e−sT /2p to obtain the
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FIGURE 34.16 (a) PI implementation with antiwindup (usually 1/Kp ≤ kw ≤ Ki /Kp) to deal with rectifier saturation and (b) PI with ramp
limiter/soft starter (kr � Kp) and integral component limiter to deal with large perturbations.

system root locus. Also, the switching converter can be
considered as a sampled data system, at frequency p/T ,
and Z transform can be used to determine the critical
gain and first frequency of instability p/(2T ), usually
half the switching frequency of the rectifier.

EXAMPLE 34.7 Buck–boost dc/dc converter feedback
design in the discontinuous mode
The methodologies just described do not apply to
switching converters operating in the discontinuous
mode. However, the derived equivalent averaged cir-
cuit approach can be used, calculating the mean value
of the discontinuous current supplied to the load, to
obtain the equivalent circuit. Consider the buck–boost
converter of Example 34.1 (Fig. 34.1) with the new val-
ues Li = 40 µH, Co = 1000 µF, Ro = 15 �. The mean
value of the current iLo , supplied to the output capacitor
and resistor of the circuit operating in the discontinuous
mode, can be calculated noting that, if the input VDC and
output vo voltages are essentially constant (low ripple),
the inductor current rises linearly from zero, peaking at
IP = (VDC /Li)δ1T (Fig. 34.17a). As the mean value of
iLo , supposed linear, is ILo = (IPδ2T )/(2T ), using the
steady-state input–output relation VDCδ1 = Voδ2 and
the above IP value, ILo can be written:

ILo = δ2
1V 2

DC T

2LiVo
(34.64)

This is a nonlinear relation that could be lin-
earized around an operating point. However, switching

(a) (b)

0

Ip

−vo

−

+

VDC

T
δ3Tδ2Tδ1T

t

iL

iLo
vLi

iL

iLo

iLo

Co

vo

vo

uc PI KCV Ro

FIGURE 34.17 (a) Waveforms of the buck–boost converter in the discontinuous mode and (b) equivalent averaged circuit.

converters in the discontinuous mode seldom oper-
ate just around an operating point. Therefore, using a
quadratic modulator (Fig. 34.18), obtained integrating
the ramp r(t ) (Fig. 34.6a) and comparing the quadratic
curve to the term ucPI vo/V 2

DC (which is easily imple-
mented using the Unitrode UC3854 integrated circuit),

the duty cycle δ1 is δ1 =
√

ucPI Vo/
(
ucmax V 2

DC

)
, and a

constant incremental factor KCV can be obtained:

KCV = ∂ILo

∂ucPI
= T

2ucmax Li
(34.65)

Considering zero-voltage perturbations and neglect-
ing the modulator delay, the equivalent averaged circuit
(Fig. 34.17b) can be used to derive the output volt-
age to input current transfer function vo(s)/iLo(s) =
Ro/(sCoRo + 1). Using a PI controller (34.50), the
closed-loop transfer function is

vo(s)

voref (s)
= KCV (1+sTz )/CoTp

s2 +s
(
Tp +Tz KCV kv Ro

)/
CoRoTp +KCV kv /CoTp

(34.66)

Since two degrees of freedom exist, the PI constants
are derived imposing ζ and ωn for the second-order
denominator of Eq. (34.66), usually ζ ≥ √

2/2 and
ωn ≤ 2πfs /10. Therefore:

Tp = KCV kv
/(

ω2
nCo

)

Tz = Tp (2ζωnCoRo − 1)
/(

KCV kv Ro
) (34.67)
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FIGURE 34.19 Block diagram of a current-mode controlled buck–boost converter operating in the discontinuous mode.

The transient behavior of this converter, with ζ = 1
and ωn ≈ πfs /10, is shown in Fig. 34.20a. Compared
to Example 34.2, the operation in the discontinuous
conduction mode reduces, by 1, the order of the state-
space averaged model and eliminates the zero in the
right-half of the complex plane. The inductor current
does not behave as a true state variable, since during
the interval δ3T this current is zero, and this value is
always the iLo current initial condition. Given the dif-
ferences between these two examples, care should be
taken to avoid the operation in the continuous mode
of converters designed and compensated for the discon-
tinuous mode. This can happen during turn-on or step
load changes and, if not prevented, the feedback design
should guarantee stability in both modes (Example 34.8,
Fig. 34.19a).

EXAMPLE 34.8 Feedback design for the buck–boost
dc/dc converter operating in the discontinuous mode
and using current-mode control
The performances of the buck–boost converter operat-
ing in the discontinuous mode can be greatly enhanced

if a current-mode control scheme is used, instead of
the voltage mode controller designed in Example 34.7.
Current-mode control in switching converters is the
simplest form of state feedback. Current mode needs
the measurement of the current iL (Fig. 34.1) but greatly
simplifies the modulator design (compare Fig. 34.18 to
Fig. 34.19), since no modulator linearization is used.
The measured value, proportional to the current iL , is
compared to the value ucPI given by the output voltage
controller (Fig. 34.20). The modulator switches off the
power semiconductor when kI IP = ucPI .

Expressed as a function of the peak iL current IP , ILo

becomes (Example 34.7) ILo = IPδ1VDC /(2Vo), or con-
sidering the modulator task ILo = ucPI δ1VDC /(2kI Vo).
For small perturbations, the incremental gain is KCM =
∂ILo/∂ucPI = δ1VDC /(2kI Vo). An ILo current delay Td =
1/(2fs), related to the switching frequency fs can be
assumed. The current mode control transfer function
GCM (s) is

GCM (s)= ILo(s)

ucPI (s)
≈ KCM

1+sTd
≈ δ1VDC

2kI Vo (1+sTd)
(34.68)
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FIGURE 34.20 Transient response of the compensated buck–boost converter in the discontinuous mode. At t = 0.001 s voref step from 23 to 26 V.
At t = 0.011 s, voref step from 26 to 23 V. Top graphs: step reference voref and output voltage vo . Bottom graphs: pulses, iL current; trace peaking at 40,
10× (voref − vo): (a) PI controlled and feedforward linearized buck–boost converter with ζ = 1 and ωn ≈ πfs /10 and (b) Current-mode controlled
buck–boost with ζ = 1 and maximum value Ipmax = 15 A.

Using the approach of Example 34.6, the values for
Tz and Tp are given by Eq. (34.69).

Tz = RoCo

Tp = 4ζ2KCM kv RoTd

(34.69)

The transient behavior of this converter, with ζ = 1
and maximum value for Ip , Ipmax = 15 A, is shown in
Fig. 34.19b. The output voltage step response presents
no overshoot, no steady-state error, and better dynam-
ics, compared to the response (Fig. 34.19a) obtained
using the quadratic modulator (Fig. 34.18). Notice that,
with current mode control, the converter behaves like
a reduced order system and the right half-plane zero is
not present.

The current-mode control scheme can be advanta-
geously applied to converters operating in the continu-
ous mode, guarantying short-circuit protection, system
order reduction, and better performances. However, for
converters operating in the step-up (boost) regime, a sta-
bilizing ramp with negative slope is required, to ensure
stability, the stabilizing ramp will transform the signal
ucPI in a new signal ucPI − rem(ksr t /T ) where ksr is the
needed amplitude for the compensation ramp and the
function rem is the remainder of the division of ksr t
by T . In the next section, current control of switching
converters will be detailed.

Closed-loop control of resonant converters can be
achieved using the outlined approaches, if the resonant
phases of operation last for small intervals compared to
the fundamental period. Otherwise, the equivalent aver-
aged circuit concept can often be used and linearized,

now considering the resonant converter input–output
relations, normally functions of the driving frequency
and input or output voltages, to replace the δ1

variable.

EXAMPLE 34.9 Output voltage control in three-
phase voltage-source inverters using sinusoidal wave
pwm (swpwm) and space vector modulation (SVM)

Sinusoidal wave PWM
Voltage-source three-phase inverters (Fig. 34.21) are
often used to drive squirrel cage induction motors (IM)
in variable speed applications.

Considering almost ideal power semiconductors, the
output voltage ubk (k ∈ {1, 2, 3}) dynamics of the inverter
is negligible as the output voltage can hardly be con-
sidered a state variable in the time scale describing
the motor behavior. Therefore, the best known method
to create sinusoidal output voltages uses an open-loop
modulator with low-frequency sinusoidal waveforms
sin(ωt ), with the amplitude defined by the modulation
index mi (mi ∈ [0, 1]), modulating high-frequency tri-
angular waveforms r(t ) (carriers), Fig. 34.22, a process
similar to the one described in Section 34.2.4.

This sinusoidal wave PWM (SWPWM) modulator
generates the variable γk , represented in Fig. 34.22 by
the rectangular waveform, which describes the inverter
k leg state:

γk =
{

1 → when mi sin(ωt ) > r(t )

0 → when mi sin(ωt ) < r(t )
(34.70)
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FIGURE 34.22 (a) SWPWM modulator schematic and (b) main SWPWM signals.

The turn-on and turn-off signals for the k leg inverter
switches are related with the variable γk as follows:

γk =
{

1 → then Suk is on and slk is off

0 → then Suk is off and slk is on
(34.71)

This applies constant-frequency sinusoidally weighted
PWM signals to the gates of each insulated gate bipolar
transistor (IGBT). The PWM signals for all the upper
IGBTs (Suk , k ∈ {1, 2, 3}) must be 120◦ out of phase
and the PWM signal for the lower IGBT Slk must be the
complement of the Suk signal. Since transistor turn-on
times are usually shorter than turn-off times, some dead
time must be included between the Suk and Slk pulses
to prevent internal short-circuits.

Sinusoidal PWM can be easily implemented using a
microprocessor or two digital counters/timers generat-
ing the addresses for two lookup tables (one for the
triangular function, another for supplying the per unit
basis of the sine, whose frequency can vary). Tables can
be stored in read only memories, ROM, or erasable
programmable ROM, EPROM. One multiplier for the
modulation index (perhaps into the digital-to-analog

(D/A) converter for the sine ROM output) and one
hysteresis comparator must also be included.

With SWPWM, the first harmonic maximum ampli-
tude of the obtained line-to-line voltage is only about
86% of the inverter dc supply voltage Va . Since it is
expectable that this amplitude should be closer to Va ,
different modulating voltages (for example, adding a
third-order harmonic with one-fourth of the funda-
mental sine amplitude) can be used as long as the
fundamental harmonic of the line-to-line voltage is kept
sinusoidal. Another way is to leave SWPWM and con-
sider the eight possible inverter output voltages trying
to directly use then. This will lead to space vector
modulation.

Space vector modulation
Space vector modulation (SVM) is based on the polar
representation (Fig. 34.23) of the eight possible base
output voltages of the three-phase inverter (Table 34.1,
where vα, vβ are the vector components of vector �Vg , g ∈
{0, 1, 2, 3, 4, 5, 6, 7}, obtained with Eq. (34.72). Therefore,
as all the available voltages can be used, SVM does not
present the voltage limitation of SWPWM. Furthermore,
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TABLE 34.1 The three-phase inverter with eight possible γk combina-
tions, vector numbers, and respective α, β components

γ1 γ2 γ3 ubk ubk − ubk+1 vα vβ Vector

0 0 0 0 0 0 0 �V0
1 0 0 γk Va (γk − γk+1)Va

√
2/3Va 0 �V1

1 1 0 γk Va (γk − γk+1)Va Va /
√

6 Va /
√

2 �V2
0 1 0 γk Va (γk − γk+1)Va −Va /

√
6 Va /

√
2 �V3

0 1 1 γk Va (γk − γk+1)Va −√
2/3Va 0 �V4

1 1 1 Va 0 0 0 �V7
1 0 1 γk Va (γk − γk+1)Va Va /

√
6 −Va /

√
2 �V6

0 0 1 γk Va (γk − γk+1)Va −Va /
√

6 −Va /
√

2 �V5

being a vector technique, SVM fits nicely with the vector
control methods often used in IM drives.

[
vα

vβ

]
=
√

2

3

[
1 −1/2 −1/2

0
√

3/2 −√
3/2

]
γ1

γ2

γ3


Va (34.72)

ucmax

r(t)

CB

CA

C0

V0

V1

V2
V7

V2
V0

V1

Ts t

4
1

2
1

γ1

δ0Ts
δATs

2
1 δBTs 4

1 δ0Ts 4
1 δ0Ts 4

1 δBTs 2
1 δATs 4

1 δ0Ts

γ2

γ3

0

FIGURE 34.24 Symmetrical SVM.

Consider that the vector �Vs (magnitude Vs , angle �)
must be applied to the IM. Since there is no such vector
available directly, SVM uses an averaging technique to
apply the two vectors, �V1 and �V2, closest to �Vs . The vec-
tor �V1 will be applied during δATs while vector �V2 will
last δBTs (where 1/Ts is the inverter switching frequency,
δA and δB are duty cycles, δA , δB ∈ [0, 1]). If there is any
leftover time in the PWM period Ts , then the zero vec-
tor is applied during time δ0Ts = Ts − δATs − δBTs .
Since there are two zero vectors ( �V0 and �V7) a symmet-
ric PWM can be devised, which uses both �V0 and �V7,
as shown in Fig. 34.24. Such a PWM arrangement mini-
mizes the power semiconductor switching frequency and
IM torque ripples.

The input to the SVM algorithm is the space vector
�Vs , into the sector sn , with magnitude Vs and angle �s .
This vector can be rotated to fit into sector 0 (Fig. 34.23)
reducing �s to the first sector, � = �s − snπ/3. For
any �Vs that is not exactly along one of the six nonnull
inverter base vectors (Fig. 34.23), SVM must generate
an approximation by applying the two adjacent vectors
during an appropriate amount of time. The algorithm
can be devised considering that the projections of �Vs ,
onto the two closest base vectors, are values proportional
to δA and δB duty cycles. Using simple trigonometric
relations in sector 0 (0 < � < π/3) Fig. 34.23, and
considering KT the proportional ratio, δA and δB are,
respectively, δA = KT OA and δB=KT OA, yielding:

δA = KT
2Vs√

3
sin
(π

3
− �

)

δB = KT
2Vs√

3
sin �

(34.73)
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The KT value can be found if we notice that when
�Vs = �V1, δA = 1, and δB = 0 (or when �Vs = �V2,
δA = 0, and δB = 1). Therefore, since when �Vs = �V1,

Vs =
√

v2
α + v2

β = √
2/3Va , � = 0, or when �Vs = �V2,

Vs = √
2/3Va , � = π/3, the KT constant is KT =√

3
/(√

2Va

)
. Hence:

δA =
√

2 Vs

Va
sin
(π

3
− �

)

δB =
√

2 Vs

Va
sin �

δ0 = 1 − δA − δB

(34.74)

The obtained resulting vector �Vs cannot extend
beyond the hexagon of Fig. 34.23. This can be under-
stood if the maximum magnitude Vsm of a vector with
� = π/6 is calculated. Since, for � = π/6, δA = 1/2, and
δB = 1/2 are the maximum duty cycles, from Eq. (34.74)
Vsm = Va/

√
2 is obtained. This magnitude is lower than

that of the vector �V1 since the ratio between these magni-
tudes is

√
3/2. To generate sinusoidal voltages, the vector

�Vs must be inside the inner circle of Fig. 34.23, so that it
can be rotated without crossing the hexagon boundary.
Vectors with tips between this circle and the hexagon
are reachable, but produce nonsinusoidal line-to-line
voltages.

For sector 0, (Fig. 34.23) SVM symmetric PWM
switching variables (γ1, γ2, γ3) and intervals (Fig. 34.24)
can be obtained by comparing a triangular wave
with amplitude ucmax , (Fig. 34.24, where r(t ) =
2ucmax t /Ts , t ∈ [0, Ts /2]) with the following values:

C0 = uc max

2
δ0 = uc max

2
(1 − δA − δB)

CA = uc max

2

(
δ0

2
+ δA

)
= uc max

2
(1 + δA − δB)

CB = uc max

2

(
δ0

2
+ δA + δB

)
= uc max

2
(1 + δA + δB)

(34.75)

Extension of Eq. (34.75) to all six sectors can be done
if the sector number sn is considered, together with the
auxiliary matrix �:

�T =
[−1 −1 1 1 1 −1
−1 1 1 1 −1 −1

]
(34.76)

Generalization of the values C0, CA , and CB , denoted
C0sn , CAsn , and CBsn are written in Eq. (34.77), knowing

that, for example, �((sn+4)mod 6+1) is the � matrix row
with number (sn + 4)mod 6 + 1.

C0sn = uc max

2

(
1 + �((Sn) mod 6+1)

[
δA

δB

])

CAsn = uc max

2

(
1 + �((Sn+4) mod 6+1)

[
δA

δB

])

CBsn = uc max

2

(
1 + �((Sn+2) mod 6+1)

[
δA

δB

])
(34.77)

Therefore, γ1, γ2, γ3 are:

γ1 =
{

0 → when r(t ) < C0sn

1 → when r(t ) > C0sn

γ2 =
{

0 → when r(t ) < CAsn

1 → when r(t ) > CAsn
(34.78)

γ3 =
{

0 → when r(t ) < CBsn

1 → when r(t ) > CBsn

Supposing that the space vector �Vs is now specified
in the orthogonal coordinates α, β( �Vα, �Vβ), instead of
magnitude Vs and angle �s , the duty cycles δA , δB can
be easily calculated knowing that vα = Vs cos �, vβ =
Vs sin � and using Eq. (34.74):

δA =
√

2

2Va

(√
3vα − vβ

)

δB =
√

2

Va
vβ

(34.79)

This equation enables the use of Eqs. (34.77) and
(34.78) to obtain SVM in orthogonal coordinates.

Using SVM or SWPWM, the closed-loop control of
the inverter output currents (induction motor stator
currents) can be performed using an approach similar
to that outlined in Example 34.6 and decoupling the
currents expressed in a d , q rotating frame.

34.3 Sliding-mode Control of Switching
Converters

34.3.1 Introduction

All the designed controllers for switching power converters
are in fact variable structure controllers, in the sense that the
control action changes rapidly from one to another of, usu-
ally, two possible δ(t ) values, cyclically changing the converter
topology. This is accomplished by the modulator (Fig. 34.6),
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which creates the switching variable δ(t ) imposing δ(t ) = 1
or δ(t ) = 0, to turn on or off the power semiconductors.
As a consequence of this discontinuous control action, indis-
pensable for efficiency reasons, state trajectories move back
and forth around a certain average surface in the state-space,
and variables present some ripple. To avoid the effects of this
ripple in the modeling and to apply linear control methodolo-
gies to time-variant systems, average values of state variables
and state-space averaged models or circuits were presented
(Section 34.2). However, a nonlinear approach to the mod-
eling and control problem, taking advantage of the inherent
ripple and variable structure behavior of switching converters,
instead of just trying to live with them, would be desirable,
especially if enhanced performances could be attained.

In this approach switching converters topologies, as discrete
nonlinear time-variant systems, are controlled to switch from
one dynamics to another when just needed. If this switch-
ing occurs at a very high frequency (theoretically infinite), the
state dynamics, described as in Eq. (34.4), can be enforced
to slide along a certain prescribed state-space trajectory. The
converter is said to be in sliding mode, the allowed devia-
tions from the trajectory (the ripple) imposing the practical
switching frequency.

Sliding mode control of variable structure systems, such as
switching converters, is particularly interesting because of the
inherent robustness [11, 12], capability of system order reduc-
tion, and appropriateness to the on/off switching of power
semiconductors. The control action, being the control equiv-
alent of the management paradigm “Just in Time” (JIT),
provides timely and precise control actions, determined by
the control law and the allowed ripple. Therefore, the switch-
ing frequency is not constant over all operating regions of the
converter.

This section treats the derivation of the control (sliding
surface) and switching laws, robustness, stability, constant-
frequency operation, and steady-state error elimination nec-
essary for sliding-mode control of switching converters, also
giving some examples.

34.3.2 Principles of Sliding-mode Control

Consider the state-space switched model Eq. (34.4) of a switch-
ing converter subsystem, and input–output linearization or
another technique, to obtain, from state-space equations, one
Eq. (34.80), for each controllable subsystem output y = x.
In the controllability canonical form [13] (also known as
input–output decoupled or companion form), Eq. (34.80) is:

d

dt
[xh , . . . , xj−1, xj ]T = [xh+1, . . . , xj , −fh(x) − ph(t )

+ bh(x)uh(t )]T (34.80)

where x = [xh , . . . , xj−1, xj ]T is the subsystem state vector,
fh(x) and bh(x) are functions of x, ph(t ) represents the exter-
nal disturbances, and uh(t ) is the control input. In this special
form of state-space modeling, the state variables are chosen so
that the xi+1 variable (i ∈ {h, . . ., j − 1}) is the time derivative

of xi , that is x =
[

xh , ẋh , ẍh , . . . ,
m
xh

]T
, where m = j − h [14].

34.3.2.1 Control Law (Sliding Surface)
The required closed-loop dynamics for the subsystem output
vector y = x can be chosen to verify Eq. (34.81) with selected
ki values. This is a model reference adaptive control approach
to impose a state trajectory that advantageously reduces the
system order (j − h + 1).

dxj

dt
= −

j−1∑
i=h

ki

kj
xi+1 (34.81)

Effectively, in a single-input single-output (SISO) subsys-
tem the order is reduced by unity, applying the restriction
Eq. (34.81). In a multiple-input multiple-output (MIMO) sys-
tem, in which ν independent restrictions could be imposed
(usually with ν degrees of freedom), the order could often be
reduced in ν units. Indeed, from Eq. (34.81), the dynamics of
the jth term of x is linearly dependent from the j − h first
terms:

dxj

dt
= −

j−1∑
i=h

ki

kj
xi+1 = −

j−1∑
i=h

ki

kj

dxi

dt
(34.82)

The controllability canonical model allows the direct cal-
culation of the needed control input to achieve the desired
dynamics Eq. (34.81). In fact, as the control action should
enforce the state vector x, to follow the reference vec-

tor xr =
[

xhr , ẋhr , ẍhr , . . . ,
m
x hr

]T
, the tracking error vec-

tor will be e = [xhr − xh , . . ., xj−1r − xj−1, xjr − xj ]T or
e = [exh , . . ., exj−1, exj ]T . Thus, equating the sub-expressions
for dxj /dt of Eqs. (34.80) and (34.81), the necessary control
input uh(t ) is

uh(t ) = ph(t ) + fh(x) + dxj

dt

bh(x)

=
ph(t ) + fh(x) −

j−1∑
i=h

ki
kj

xi+1r +
j−1∑
i=h

ki
kj

exi+1

bh(x)
(34.83)

This expression is the required closed-loop control law, but
unfortunately it depends on the system parameters, on external
perturbations and is difficult to compute. Moreover, for some
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output requirements, Eq. (34.83) would give extremely high
values for the control input uh(t ), which would be impractical
or almost impossible.

In most switching converters uh(t ) is discontinuous. Yet,
if we assume one or more discontinuity borders dividing the
state-space into subspaces, the existence and uniqueness of
the solution is guaranteed out of the discontinuity borders,
since in each subspace the input is continuous. The discon-
tinuity borders are subspace switching hypersurfaces, whose
order is the space order minus one, along which the subsystem
state slides, since its intersections with the auxiliary equations
defining the discontinuity surfaces can give the needed control
input.

Within the sliding-mode control (SMC) theory, assuming a
certain dynamic error tending to zero, one auxiliary equation
(sliding surface) and the equivalent control input uh(t ) can be
obtained, integrating both sides of Eq. (34.82) with null initial
conditions:

kj xj

j−1∑
i=h

kixi =
j∑

i=h

kixi = 0 (34.84)

This equation represents the discontinuity surface (hyper-
plane) and just defines the necessary sliding surface S(xi , t ) to
obtain the prescribed dynamics of Eq. (34.81):

S(xi , t ) =
j∑

i=h

kixi = 0 (34.85)

In fact, by taking the first time derivative of S(xi , t ),
Ṡ(xi , t ) = 0, solving it for dxj /dt , and substituting the result in
Eq. (34.83), the dynamics specified by Eq. (34.81) is obtained.
This means that the control problem is reduced to a first-
order problem, since it is only necessary to calculate the time
derivative of Eq. (34.85) to obtain the dynamics (34.81) and
the needed control input uh(t ).

The sliding surface Eq. (34.85), as the dynamics of the con-
verter subsystem, must be a Routh–Hurwitz polynomial and
verify the sliding manifold invariance conditions, S(xi , t ) = 0
and Ṡ(xi , t ) = 0. Consequently, the closed-loop controlled sys-
tem behaves as a stable system of order j − h, whose dynamics
is imposed by the coefficients ki , which can be chosen by pole
placement of the poles of the order m = j − h polynomial.
Alternatively, certain kinds of polynomials can be advanta-
geously used [15]: Butterworth, Bessel, Chebyshev, elliptic
(or Cauer), binomial, and minimum integral of time abso-
lute error product (ITAE). Most useful are Bessel polynomials
BE (s) Eq. (34.88), which minimize the system response time tr ,
providing no overshoot, the polynomials ITAE (s) Eq. (34.87),
that minimize the ITAE criterion for a system with desired nat-
ural oscillating frequency ωo , and binomial polynomials BI (s)

Eq. (34.86). For m > 1, ITAE polynomials give faster responses
than binomial polynomials.

BI (s)m = (s +ωo)m

=




m =0⇒BI (s)=1

m = 1⇒BI (s)= s +ωo

m =2⇒BI (s)= s2 +2ωos +ω2
o

m =3⇒BI (s)= s3 +3ωos2 +3ω2
os +ω3

o

m =4⇒BI (s)= s4 +4ωos3 +6ω2
os2 +4ω3

os +ω4
o

...

(34.86)

ITAE (s)m =




m =0⇒ ITAE (s)=1

m = 1⇒ ITAE (s)= s +ωo

m =2⇒ ITAE (s)= s2 +1.4ωos +ω2
o

m =3⇒ ITAE (s)= s3 +1.75ωos2 +2.15ω2
os +ω3

o

m =4⇒ ITAE (s)= s4 +2.1ωos3 +3.4ω2
os2

+2.7ω3
os +ω4

o

...

(34.87)

BE (s)m =




m =0⇒BE (s)=1

m = 1⇒BE (s)= str +1

m = 2⇒BE (s)= (str )2+3str +3
3

m =3⇒BE (s)=
(
(str )2+3.678str +6.459

)
(str +2.322)

15

= (str )
3+6(str )

2+15str +15
15

m =4⇒BE (s)= (str )
4+10(str )

3+45(str )
2+105(str )+105

105

...

(34.88)

These polynomials can be the reference model for this model
reference adaptive control method.

34.3.2.2 Closed-loop Control Input–Output
Decoupled Form

For closed-loop control applications, instead of the state
variables xi , it is worthy to consider, as new state vari-
ables, the errors exi , components of the error vector e =[

exh , ėxh , ëxh , . . . ,
m
e xh

]T
of the state-space variables xi , rela-

tive to a given reference xir Eq. (34.90). The new controllability
canonical model of the system is

d

dt
[exh , . . . , exj−1 , exj ]T = [exh+1 , . . . , exj , −fe(e) + pe (t )

− be (e)uh(t )]T (34.89)

where fe (e), pe (t ), and be (e) are functions of the error vector e.
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As the transformation of variables

exi = xir − xi with i = h, . . . , j (34.90)

is linear, the Routh–Hurwitz polynomial for the new sliding
surface S(exi , t ) is

S(exi , t ) =
j∑

i=h

kiexi = 0 (34.91)

Since exi+1 (s) = sexi (s), this control law, from Eqs. (34.86–
34.88) can be written as S(e,s) = exi (s+ωo)m , does not depend
on circuit parameters, disturbances, or operating conditions,
but only on the imposed ki parameters and on the state vari-
able errors exi , which can usually be measured or estimated.
The control law Eq. (34.91) enables the desired dynamics of
the output variable(s), if the semiconductor switching strat-
egy is designed to guarantee the system stability. In practice,
the finite switching frequency of the semiconductors will
impose a certain dynamic error ε tending to zero. The control
law Eq. (34.91) is the required controller for the closed-loop
SISO subsystem with output y.

34.3.2.3 Stability
Existence condition. The existence of the operation in slid-
ing mode implies S(exi , t ) = 0. Also, to stay in this regime,
the control system should guarantee Ṡ(exi , t ) = 0. There-
fore, the semiconductor switching law must ensure the stability
condition for the system in sliding mode, written as

S(exi , t )Ṡ(exi , t ) < 0 (34.92)

The fulfillment of this inequality ensures the convergence of
the system state trajectories to the sliding surface S(exi , t ) = 0,
since

– if S(exi , t ) > 0 and Ṡ(exi , t ) < 0, then S(exi , t ) will decrease
to zero,
– if S(exi , t ) < 0 and Ṡ(exi , t ) > 0, then S(exi , t ) will increase
toward zero.

Hence, if Eq. (34.92) is verified, then S(exi , t ) will con-
verge to zero. The condition (34.92) is the manifold S(exi , t )
invariance condition, or the sliding-mode existence condition.

Given the statespace model Eq. (34.89) as a function of the
error vector e and, from Ṡ(exi , t ) = 0, the equivalent average
control input Ueq(t ) that must be applied to the system in
order that the system state slides along the surface Eq. (34.91),
is given by

Ueq(t ) = kh
dexh

dt +kh+1
dexh+1

dt +···+kj−1+
dexj−1

dt +kj(−fe (e)+pe (t ))
kj be (e)

(34.93)

This control input Ueq(t ) ensures the converter subsystem
operation in the sliding mode.

Reaching condition. The fulfillment of S(exi , t )Ṡ(exi , t ) < 0,
as S(exi , t )Ṡ(exi , t ) = (1/2)Ṡ2(exi , t ), implies that the distance
between the system state and the sliding surface will tend to
zero, since S2(exi , t ) can be considered as a measure for this
distance. This means that the system will reach sliding mode.
Additionally, from Eq. (34.89) it can be written:

dexj

dt
= −fe (e) + pe (t ) − be (e)uh(t ) (34.94)

From Eq. (34.91), Eq. (34.95) is obtained.

S(exi , t ) =
j∑

i=h

kiexi = khexh + kh+1
dexh

dt
+ kh+2

d2exh

dt 2

+ · · · + kj
dmexh

dt m
(34.95)

If S(exi , t ) > 0, from the Routh–Hurwitz property of
Eq. (34.91), then exj > 0. In this case, to reach S(exi , t ) = 0 it
is necessary to impose −be (e)uh(t ) = −U in Eq. (34.94), with
U chosen to guarantee dexj /dt < 0. After a certain time, exj

will be exj = dmexh /dt m < 0, implying along with Eq. (34.95)

that Ṡ(exi , t ) < 0, thus verifying Eq. (34.92). Therefore, every
term of S(exi , t ) will be negative, which implies, after a certain
time, an error exh < 0 and S(exi , t ) < 0. Hence, the system
will reach sliding mode, staying there if U = Ueq(t ). This
same reasoning can be made for S(exi , t ) < 0, it is now being
necessary to impose −be (e)uh(t ) = +U , with U high enough
to guarantee dexj /dt > 0.

To ensure that the system always reaches sliding-mode oper-
ation, it is necessary to calculate the maximum value of Ueq(t ),
Ueqmax , and also impose the reaching condition:

U > Ueqmax (34.96)

This means that the power supply voltage values U should
be chosen high enough to additionally account for the maxi-
mum effects of the perturbations. With step inputs, even with
U > Ueqmax , the converter usually loses sliding mode, but it
will reach it again, even if the Ueqmax is calculated considering
only the maximum steady-state values for the perturbations.

34.3.2.4 Switching Law
From the foregoing considerations, supposing a system with
two possible structures, the semiconductor switching strategy
must ensure S(exi , t )Ṡ(exi , t ) < 0. Therefore, if S(exi , t ) > 0,
then Ṡ(exi , t ) < 0, which implies, as seen, −be (e)uh(t ) = −U
(the sign of be (e) must be known). Also, if S(exi , t ) < 0,
then Ṡ(exi , t ) > 0, which implies −be (e)uh(t ) = +U . This
imposes the switching between two structures at infinite fre-
quency. Since power semiconductors can switch only at finite
frequency, in practice, a small enough error for S(exi , t ) must
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be allowed (−ε < S(exi , t ) < +ε). Hence, the switching law
between the two possible system structures might be

uh(t ) =
{

U /be (e) for S(exi , t ) > +e

−U /be (e) for S(exi , t ) < −e
(34.97)

The condition Eq. (34.97) determines the control input to
be applied and therefore represents the semiconductor switch-
ing strategy or switching function. This law determines a
two-level pulse width modulator with JIT switching (variable
frequency).

34.3.2.5 Robustness
The dynamics of a system, with closed-loop control using the
control law Eq. (34.91) and the switching law Eq. (34.97), does
not depend on the system operating point, load, circuit param-
eters, power supply, or bounded disturbances, as long as the
control input uh(t ) is large enough to maintain the converter
subsystem in sliding mode. Therefore, it is said that the switch-
ing converter dynamics, operating in sliding mode, is robust
against changing operating conditions, variations of circuit
parameters, and external disturbances. The desired dynamics
for the output variable(s) is determined only by the ki coeffi-
cients of the control law Eq. (34.91), as long as the switching
law (34.97) maintains the converter in sliding mode.

34.3.3 Constant-frequency Operation

Prefixed switching frequency can be achieved, even with
the sliding-mode controllers, at the cost of losing the JIT
action. As the sliding-mode controller changes the control
input when needed, and not at a certain prefixed rhythm,
applications needing constant switching frequency (such as
thyristor rectifiers or resonant converters), must compare
S(exi , t ) (hysteresis width 2ι much narrower than 2ε) with
auxiliary triangular waveforms (Fig. 34.25a), auxiliary saw-
tooth functions (Fig. 34.25b), three-level clocks (Fig. 34.25c),
or phase locked loop control of the comparator hysteresis

uh(t )uh(t )

2i2i
++

−−

S(exi,t )

(b)

uh(t )
2i

+
+

+

S(exi,t )

0

Three
Level
Clock

(c)

(a)

(d)
S(exi,t )

S(exi,t )

FIGURE 34.25 Auxiliary functions and methods to obtain constant switching frequency with sliding-mode controllers.

variable width 2ε[7]. However, as illustrated in Fig. 34.25d,
steady-state errors do appear. Often, they should be eliminated
as described in Section 34.3.4.

34.3.4 Steady-state Error Elimination in
Converters with Continuous Control
Inputs

In the ideal sliding mode, state trajectories are directed toward
the sliding surface (34.91) and move exactly along the dis-
continuity surface, switching between the possible system
structures, at infinite frequency. Practical sliding modes can-
not switch at infinite frequency, and therefore exhibit phase
plane trajectory oscillations inside a hysteresis band of width
2ε, centered in the discontinuity surface.

The switching law Eq. (34.91) permits no steady-state errors
as long as S(exi , t ) tends to zero, which implies no restrictions
on the commutation frequency. Control circuits operating at
constant frequency, or needed continuous inputs, or particular
limitations of the power semiconductors, such as minimum
on or off times, can originate S(exi , t ) = ε1 
= 0. The steady-
state error (exh ) of the xh variable, xhr − xh = ε1/kh , can be
eliminated, increasing the system order by 1. The new state-
space controllability canonical form, considering the error exi ,
between the variables and their references, as the state vector, is

d

dt

[∫
exh dt , exh , . . . , exj−1 , exj

]T

= [exh , exh+1 , . . . , exj , −fe (e) − pe (t ) − be (e)uh(t )]T

(34.98)

The new sliding surface S(exi , t ), written from Eq. (34.91)
considering the new system Eq. (34.98), is

S(exi , t ) = k0

∫
exh dt +

j∑
i=h

kiexi = 0 (34.99)

This sliding surface offers zero-state error, even if S(exi , t ) =
ε1 due to the hardware errors or fixed (or limited)
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frequency switching. Indeed, at the steady state, the only
nonnull term is k0

∫
exh dt = ε1. Also, like Eq. (34.91), this

closed-loop control law does not depend on system parameters
or perturbations to ensure a prescribed closed-loop dynamics
similar to Eq. (34.81) with an error approaching zero.

The approach outlined herein precisely defines the con-
trol law (sliding surface (34.91) or (34.99) needed to obtain
the selected dynamics, and the switching law Eq. (34.97). As
the control law allows the implementation of the system con-
troller, and the switching law gives the PWM modulator, there
is no need to design linear or nonlinear controllers, based on
linear converter models, or devise offline PWM modulators.
Therefore, sliding-mode control theory, applied to switching
converters, provides a systematic method to generate both the
controller(s) (usually nonlinear) and the modulator(s) that
will ensure a model reference robust dynamics, solving the
control problem of switching converters.

In the next examples, it is shown that the sliding-mode con-
trollers use (nonlinear) state feedback, therefore, needing to
measure the state variables and often other variables, since
they use more system information. This is a disadvantage since
more sensors are needed. However, the straightforward con-
trol design and obtained performances are much better than
those obtained with the averaged models, the use of more sen-
sors being really valued. Alternatively to the extra sensors, state
observers can be used [13, 14].

34.3.5 Examples: Buck–Boost DC/DC
Converter, Half-bridge Inverter, 12-pulse
Parallel Rectifiers, Audio Power
Amplifiers, Near Unity Power Factor
Rectifiers, Multilevel Inverters, Matrix
Converters

EXAMPLE 34.10 Sliding-mode control of the buck–
boost dc/dc converter
Consider again the buck–boost converter of Fig. 34.1 and
assume the converter output voltage vo to be the con-
trolled output. From Section 34.2, using the switched
state-space model of Eq. (34.11), making dvo/dt = θ,
and calculating the first time derivative of θ, the con-
trollability canonical model (34.100), where io = vo/Ro ,
is obtained:

dvo

dt
= θ = 1 − δ(t )

Co
iL − io

Co

dθ

dt
= − (1 − δ(t ))2

LiCo
vo − Coθ + io

Co(1 − δ(t ))

dδ(t )

dt

− 1

Co

dio
dt

+ δ(t )(1 − δ(t ))

CoLi
VDC (34.100)

This model, written in the form of Eq. (34.80), con-
tains two state variables, vo and θ. Therefore, from

Eq. (34.91) and considering evo = vor − vo , eθ = θr − θ,
the control law (sliding surface) is

S(exi , t ) =
2∑

i=h

kiexi = k1(vor − vo) + k2
dvor

dt
− k2

dvo

dt

= k1(vor − vo) + k2
dvor

dt
− k2

Co
(1 − δ(t ))iL

+ k2

Co
io = 0 (34.101)

This sliding surface depends on the variable δ(t ),
which should be precisely the result of the application,
in Eq. (34.101), of a switching law similar to Eq. (34.97).
Assuming an ideal up–down converter and slow varia-
tions, from Eq. (34.31) the variable δ(t ) can be averaged
to δ1 = vo/(vo + VDC ). Substituting this relation in
Eq. (34.101), and rearranging, Eq. (34.102) is derived:

S(exi ,t )= Cok1

k2

(
vo +VDC

vo

)

×
(

(vor −vo)+ k2

k1

dvor

dt
+ k2

k1

1

Co
io

)
− iL =0

(34.102)

This control law shows that the power supply voltage
VDC must be measured, as well as the output voltage vo

and the currents io and iL .
To obtain the switching law from stability considera-

tions (34.92), the time derivative of S(exi , t ), supposing
(vo + VDC )/vo almost constant, is

Ṡ(exi , t ) = Cok1

k2

(
vo + VDC

vo

)

×
(

devo

dt
+ k2

k1

d2vor

dt 2
+ k2

k1Co

dio
dt

)
− diL

dt
(34.103)

If S(exi , t ) > 0 then, from Eq. (34.92), Ṡ(exi , t ) < 0
must hold. Analyzing Eq. (34.103), we can conclude
that, if S(exi , t ) > 0, Ṡ(exi , t ) is negative if, and only
if, diL/dt > 0. Therefore, for positive errors evo >0 the
current iL must be increased, which implies δ(t ) = 1.
Similarly, for S(exi , t ) < 0, diL/dt < 0 and δ(t ) = 0.
Thus, a switching law similar to Eq. (34.97) is obtained:

δ(t ) =
{

1 for S(exi , t ) > +e

0 for S(exi , t ) < −e
(34.104)

The same switching law could be obtained from
knowing the dynamic behavior of this nonminimum-
phase up-down converter: to increase (decrease) the
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output voltage, a previous increase (decrease) of the iL
current is mandatory.

Equation (34.101) shows that, if the buck–boost con-
verter is into the sliding mode (S(exi , t ) = 0), the
dynamics of the output voltage error tends exponentially
to zero with time constant k2/k1. Since during step tran-
sients, the converter is in the reaching mode, the time
constant k2/k1 cannot be designed to originate error vari-
ations larger than the one allowed by the self-dynamics
of the converter excited by a certain maximum permissi-
ble iL current. Given the polynomials (34.86–34.88) with
m = 1, k1/k2 = ωo should be much lower than the finite
switching frequency (1/T ) of the converter. Therefore,

1

deltaSwitching
law

5
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1/4

k2/(k1*Co)

4

io

+

−

Sum1

1

Vdc
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+
−
+
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

10

20

30

1}
vo

re
f, 

2}
vo

 [V
]

t [s]

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0

20

40

60

2}
10

*(
vo

re
f-

vo
) 

[V
], 

1}
iL

[A
]

t [s]

(b)

(a)

FIGURE 34.26 (a) Block diagram of the sliding-mode nonlinear controller for the buck–boost converter and (b) transient responses of the sliding-
mode controlled buck–boost converter. At t = 0.005 s, voref step from 23 to 26 V. At t = 0.02 s, VDC step from 26 to 23 V. Top graph: step reference
voref and output voltage vo . Bottom graph: trace starting at 20 is iL current; trace starting at zero is 10×(voref − vo).

the time constant must obey k2/k1 � T . Then, knowing
that k2 and k1 are both imposed, the control designer
can tailor the time constant as needed, provided that the
above restrictions are observed.

Short-circuit-proof operation for the sliding-mode
controlled buck–boost converter can be derived from
Eq. (34.102), noting that all the terms to the left of
iL represent the set point for this current. Therefore,
limiting these terms (Fig. 34.26, saturation block, with
iLmax = 40 A), the switching law (34.104) ensures
that the output current will not rise above the maxi-
mum imposed limit. Given the converter nonminimum-
phase behavior, this iL current limit is fundamental
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to reach the sliding mode of operation with step
disturbances.

The block diagram (Fig. 34.26a) of the implemented
control law Eq. (34.102) (with Cok1/k2 = 4) and switch-
ing law (34.103) (with ε = 0.3) does not included the
time derivative of the reference (dvor /dt ) since, in a
dc/dc converter its value is considered zero. The con-
troller hardware (or software), derived using just the
sliding-mode approach, operates only in a closed-loop.

The resulting performance (Fig. 34.26b) is much bet-
ter than that obtained with the PID notch filter (compare
to Example 34.4, Fig. 34.9b), with a higher response
speed and robustness against power-supply variations.

EXAMPLE 34.11 Sliding mode control of the single-
phase half-bridge converter
Consider the half-bridge four quadrant converter of
Fig. 34.27 with the output filter and the inductive load
(VDCmax = 300 V; VDCmin = 230 V; Ri = 0.1 �;
Lo = 4 mH; Co = 470 µF; inductive load with nominal
values Ro = 7 �, Lo = 1 mH).

Assuming that power switches, output filter capacitor,
and power supply are all ideal, and a generic load with
allowed slow variations, the switched state-space model
of the converter, with state variables vo and iL , is

d

dt

[
vo

iL

]
=
[

0 1/Co

−1/Lo −Ri/Lo

] [
vo

iL

]

+
[−1/Co 0

0 1/Lo

] [
io

δ(t )VDC

]
(34.105)

where io is the generic load current and vPWM =
δ(t )VDC is the extended PWM output voltage (δ(t ) =
+1 when one of the upper main semiconductors of
Fig. 34.27 is conducting and δ(t ) = −1 when one of
the lower semiconductors is on).

d

− VPWM

iL

+
VDC

−

S2

Ri
Lo +

vo

−Co

+
VDC

−

L
o
a

io

Driver

S1

Driver

+

FIGURE 34.27 Half-bridge power inverter with insulated gate bipolar
transistors, output filter, and load.

34.3.5.1 Output Current Control (Current-mode
Control)

To perform as a viL voltage controlled iL current source (or
sink) with transconductance gm (gm = iL/viL ), this converter

must supply a current iL to the output inductor, obeying
iL = gmviL . Using a bounded viL voltage to provide output
short-circuit protection, the reference current for a sliding-
mode controller must be iLr = gmviL . Therefore, the controlled
output is the iL current and the controllability canonical model
(34.106) is obtained from the second equation of (34.105),
since the dynamics of this subsystem, being governed by
δ(t )VDC , is already in the controllability canonical form for
this chosen output.

diL
dt

= −Ri

Lo
iL − 1

Lo
vo + δ(t )VDC

Lo
(34.106)

A suitable sliding surface (34.107) is obtained from
Eq. (34.91), making eiL = iLr − iL .

S(eiL , t ) = kpeiL = kp(iLr − iL) = kp(gmviL − iL) = 0
(34.107)

The switching law Eq. (34.108) can be devised calculat-
ing the time derivative of Eq. (34.107) Ṡ(eiL , t ), and applying
Eq. (34.92). If S(eiL , t ) > 0, then diL/dt > 0 must hold to
obtain Ṡ(eiL , t ) < 0, implying δ(t ) = 1.

δ(t ) =
{

1 for S(eiL , t ) > +e

−1 for S(eiL , t ) < −e
(34.108)

The kp value and the allowed the ripple ε define the
instantaneous value of the variable switching frequency. The
sliding-mode controller is represented in Fig. 34.28a. Step
response (Fig. 34.29a) shows the variable-frequency operation,
a very short rise time (limited only by the available power
supply) and confirms the expected robustness against supply
variations.

For systems where fixed-frequency operation is needed, a
triangular wave, with frequency (10 kHz) slightly greater than
the maximum variable frequency, can be added (Fig. 34.28b)
to the sliding-mode controller, as explained in Section 34.3.3.
Performances (Fig. 34.29b) are comparable to those of
the variable-frequency sliding-mode controller (Fig. 34.29a).
Fig. 34.29b shows the constant switching frequency, but also a
steady-state error dependent on the operating point.

To eliminate this error, a new sliding surface Eq. (34.109),
based on Eq. (34.99), should be used. The constants kp and k0

can be calculated, as discussed in Example 34.10.

S(eiL , t ) = k0

∫
eiL dt + kpeiL = 0 (34.109)

The new constant-frequency sliding-mode current con-
troller (Fig. 34.30a), with added antiwindup techniques
(Example 34.6), since a saturation (errMax) is needed to keep
the frequency constant, now presents no steady-state error
(Fig. 34.30b). Performances are comparable to those of the
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FIGURE 34.28 (a) Implementation of short-circuit-proof sliding-mode current controller (variable frequency) and (b) implementation of fixed
frequency, short-circuit-proof sliding-mode current controller using a triangular waveform.
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variable-frequency controller, and no robustness loss is visi-
ble. The applied sliding-mode approach led to the derivation
of the known average current-mode controller.

34.3.5.2 Output Voltage Control
To obtain a power operational amplifier suitable for building
uninterruptible power supplies, power filters, power gyrators,
inductance simulators, or power factor active compensators,
vo must be the controlled converter output. Therefore, using
the input–output linearization technique, it is seen that the
first time derivative of the output (dvo/dt ) = (iL − io)/Co = θ,
does not explicitly contain the control input δ(t )VDC . Then,
the second derivative must be calculated. Taking into account
Eq. (34.105), as θ = (iL − io)/Co , Eq. (34.110) is derived.

d2vo

dt 2
= d

dt
θ= d

dt

(
iL − io

Co

)

=−Ri

Lo
θ− 1

LoCo
vo − Ri

LoCo
io − 1

Co

dio
dt

+ 1

LoCo
δ(t )VDC

(34.110)

This expression shows that the second derivative of the
output depends on the control input δ(t )VDC . No further
time derivative is needed, and the state-space equations of the
equivalent circuit, written in the phase canonical form, are

d

dt

[
vo

θ

]
=
[

θ

− Ri
Lo

θ− 1
LoCo

vo − Ri
LoCo

io − 1
Co

dio
dt + 1

LoCo
δ(t )VDC

]

(34.111)

According to Eqs. (34.91), (34.111), and (34.105), consid-
ering that evo is the feedback error evo = vor − vo , a sliding
surface S(evo , t ), can be chosen:

S(evo ,t )=k1evo +k2
devo

dt
=evo + k2

k1

devo

dt

=evo +β
devo

dt
= Co

β
(vor −vo)+Co

dvor

dt
+ io − iL =0

(34.112)

where β is the time constant of the desired first-order response
of output voltage (β � T > 0), as the strong relative degree
[14] of this system is 2, and the sliding-mode operation reduces
by one, the order of this system (the strong relative degree
represents the number of times the output variable must be
time differentiated until a control input explicitly appears).

Calculating Ṡ(evo , t ), the control strategy (switching law)
Eq. (34.113) can be devised since, if S(evo , t ) > 0, then diL/dt

must be positive to obtain Ṡ(eiL , t ) < 0, implying δ(t ) = 1.
Otherwise, δ(t ) = −1.

δ(t ) =
{

1 for S(evo , t ) > 0(vPWM = + VDC )

−1 for S(evo , t ) < 0(vPWM = − VDC )
(34.113)

In the ideal sliding-mode dynamics, the filter input voltage
vPWM switches between VDC and −VDC with the infinite fre-
quency. This switching generates the equivalent control voltage
Veq that must satisfy the sliding manifold invariance con-
ditions, S(evo , t ) = 0 and Ṡ(evo , t ) = 0. Therefore, from
Ṡ(evo , t ) = 0, using Eqs. (34.112) and (34.105), (or from
Eq. (34.110)), Veq is

Veq = LoCo

[
d2vor

dt 2
+ 1

β

dvor

dt
+ vo

LoCo

+ (βRi − Lo)iL
βLoCo

io
βCo

+ 1

Co

dio
dt

]
(34.114)

This equation shows that only smooth input vor sig-
nals (“smooth” functions) can be accurately reproduced at
the inverter output, as it contains derivatives of the vor signal.
This fact is a consequence of the stored electromagnetic
energy. The existence of the sliding-mode operation implies
the following necessary and sufficient condition:

−VDC < Veq < VDC (34.115)

Equation (34.115) enables the determination of the mini-
mum input voltage VDC needed to enforce the sliding-mode
operation. Nevertheless, even in the case of |Veq| > |VDC |,
the system experiences only a saturation transient and even-
tually reaches the region of sliding-mode operation, except if,
in the steady state, operating point and disturbances enforce
|Veq| > |VDC |.

In the ideal sliding mode, at infinite switching frequency,
state trajectories are directed toward the sliding surface and
move exactly along the discontinuity surface. Practical switch-
ing converters cannot switch at infinite frequency, so a typical
implementation of Eq. (34.112) (Fig. 34.31a) with neglected
v̇or features a comparator with hysteresis 2ε, switching occur-
ring at |S(evo , t )| > ε with frequency depending on the slopes
of iL . This hysteresis causes phase-plane trajectory oscillations
of width 2ε around the discontinuity surface S(evo , t ) = 0, but
the Veq voltage is still correctly generated, since the resulting
duty cycle is a continuous variable (except for error limitations
in the hardware or software, which can be corrected using the
approach pointed out by Eq. (34.98)).

The design of the compensator and the modulator is inte-
grated with the same theoretical approach, since the signal
S(evo , t ) applied to a comparator generates the pulses for the
power semiconductors drives. If the short-circuit-proof oper-
ation is built into the power semiconductor drives, there is the
possibility to measure only the capacitor current (iL − io).
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FIGURE 34.31 (a) Implementation of short-circuit-proof, sliding-mode output voltage controller (variable frequency) and (b) implementation of
antiwindup PI current-mode (fixed frequency) controller.

34.3.5.3 Short-circuit Protection and Fixed-frequency
Operation of the Power Operational
Amplifier

If we note that all the terms to the left of iL in Eq. (34.112)
represent the value of iLr , a simple way to provide short-circuit
protection is to bound the sum of all these terms (Fig. 34.31a
with iLrmax = 100 A). Alternatively, the output current con-
trollers of Fig. 34.28 can be used, comparing Eq. (34.107)
to Eq. (34.112), to obtain iLr = S(evo , t )/kp + iL . Therefore,
the block diagram of Fig. 34.31a provides the iLr output (for
kp = 1) to be the input of the current controllers (Fig. 34.28
and Fig. 34.31a). As seen, the controllers of Fig. 34.28b and
Fig. 34.30a also ensure fixed-frequency operation.

For comparison purposes a proportional–integral (PI) con-
troller, with antiwindup (Fig. 34.31b) for output voltage
control, was designed, supposing the current-mode control
of the half bridge (iLr = gmviL /(1 + sT d ) considering a small
delay Td ), a pure resistive load Ro , and using the approach
outlined in Examples 34.6 and 34.8 (kv = 1, gm = 1, ζ2 = 0.5,
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FIGURE 34.32 Performance of the power operational amplifier; response to a vor step from −200 to 200 V at t = 0.001 s and to a VDC step from
300 to 230 V at t = 0.015 s: (a) variable-frequency sliding mode (nominal load) and (b) variable-frequency sliding mode (Ro×20).

Td = 600 µs). The obtained PI (34.50) parameters are

Tz = RoCo

Tp = 4ζ2gmkv RoTd

(34.116)

Both variable frequency (Fig. 34.32) and constant frequency
(Fig. 34.33) sliding-mode output voltage controllers present
excellent performance and robustness with nominal loads.
With loads much higher than the nominal value (Fig. 34.32b
and Fig. 34.33b), the performance and robustness are also
excellent. The sliding-mode constant-frequency PWM con-
troller presents the additional advantage of injecting lower
ripple in the load.

As expected, the PI regulator presents lower performance
(Fig. 34.34). The response speed is lower and the insensitivity
to power supply and load variations (Fig. 34.34b) is not as high
as with the sliding mode. Nevertheless, the PI performances
are acceptable, since its design was carried considering a slow
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and fast manifold sliding-mode approach: the fixed-frequency
sliding-mode current controller (34.109) for the fast manifold
(the iL current dynamics) and the antiwindup PI for the slow
manifold (the vo voltage dynamics, usually much slower than
the current dynamics).

EXAMPLE 34.12 Constant-frequency sliding-mode con-
trol of p pulse parallel rectifiers
This example presents a new paradigm to the control of
thyristor rectifiers. Since p pulse rectifiers are variable-
structure systems, sliding-mode control is applied here
to 12-pulse rectifiers, still useful for very high-power

applications [3]. The design determines the variables to
be measured and the controlled rectifier presents robust-
ness, and much shorter response times, even with the
parameter uncertainty, perturbations, noise, and non-
modeled dynamics. These performances are not feasible
using linear controllers, obtained here for comparison
purposes.

34.3.5.4 Modeling the 12-pulse Parallel Rectifier
The 12-pulse rectifier (Fig. 34.35a) is built with four three-
phase half-wave rectifiers, connected in parallel with current-
sharing inductances l and l ′ merged with capacitors C ′, C2, to
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FIGURE 34.35 (a) 12-pulse rectifier with interphase reactors and intermediate capacitors; (b) rectifier model neglecting the half-wave rectifier
dynamics and (c) low-order averaged equivalent circuit for the 12-pulse rectifier with the resulting output double LC filter.

obtain a second-order LC filter. This allows low-ripple output
voltage and continuous mode of operation (laboratory model
with l = 44 mH; l ′ = 13 mH; C ′ = C2 = 10 mF; star-delta
connected ac sources with ERMS ≈ 65 V and power rating
2.2 kW, load approximately resistive Ro ≈ 3–5 �).

To control the output voltage vc2 , given the complexity of
the whole system, the best approach is to derive a low-order
model. By averaging the four half-wave rectifiers, neglecting
the rectifier dynamics and mutual couplings, the equivalent
circuit of Fig. 34.35b is obtained (l1 = l2 = l3 = l4 = l ;
l5 = l6 = l ′; C11 = C12 = C ′). Since the rectifiers are identical,
the equivalent 12-pulse rectifier model of Fig. 34.35c is derived,
simplifying the resulting parallel associations (L1 = l/4; L2 =
l ′/2; C1 = 2C ′).

Considering the load current io as an external perturba-
tion and vi the control input, the state-space model of the
equivalent circuit of Fig. 34.35c is

d

dt




iL1

iL2

vc1

vc2


 =




0 0 −1/L1 0
0 0 1/L2 −1/L2

1/C1 −1/C1 0 0
0 1/C2 0 0







iL1

iL2

vc1

vc2




+




1/L1 0
0 0
0 0
0 −1/C2



[

vi

io

]
(34.117)

34.3.5.5 Sliding-mode Control of the 12-pulse Parallel
Rectifier

Since the output voltage vc2 of the system must follow the
reference vc2r , the system equations in the phase canonical
(or controllability) form must be written, using the error

evc2
= vc2r − vc2 and its time derivatives as new state error

variables, as done in Example 34.11.

d

dt




evc2

eθ

eγ

eβ


=




eθ

eγ

eβ

−
(

1
C1L1

+ 1
C1L2

+ 1
C2L2

)
eγ − evc2

C1L1C2L2
−
(

1
C1L1C2

+ 1
C1C2L2

)
dio
dt − 1

C2

d3io
dt 3 − vi

C1L1C2L2




(34.118)

The sliding surface S(exi , t ), designed to reduce the system
order, is a linear combination of all the phase canonical state
variables. Considering Eqs. (34.118) and (34.117), and the
errors evc2

, eθ , eγ , and eβ, the sliding surface can be expressed
as a combination of the rectifier currents, voltages, and their
time derivatives:

S(exi , t )=evc2
+kθeθ +kγeγ +kβeβ

=vc2r +kθθr +kγγr +kββr −
(

1− kγ

C2L2

)
vc2

− kγ

C2L2
vc1 +

(
kθ

C2
− kβ

C2
2 L2

)
io + kγ

C2

dio
dt

+ kβ

C2

d2io
dt 2

− kβ

C1C2L2
iL1 −

(
kθ

C2
− kβ

C1C2L2
− kβ

C2
2 L2

)
iL2 =0

(34.119)

Equation (34.119) shows the variables to be measured (vc2 ,
vc1 , io , iL1 , and iL2 ). Therefore, it can be concluded that the
output current of each three-phase half-wave rectifier must be
measured.
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The existence of the sliding mode implies S(exi , t ) = 0 and
Ṡ(exi , t ) = 0. Given the state models (34.117, 34.118), and
from Ṡ(exi , t ) = 0, the available voltage of the power supply
vi must exceed the equivalent average dc input voltage Veq

(34.120), which should be applied at the filter input, in order
that the system state slides along the sliding surface (34.119).

Veq = C1L1C2L2

kβ

(
θr +kθγr +kγβr +kββ̇r

)+vc2 − C1L1C2L2

kβ

×(θ+kγβ
)+
(

C2L2 +C2L1 +C1L1 −C1L1C2L2
kθ

kβ

)
γ

+(L1 +L2)
dio
dt

+C1L1L2
d3io
dt 3

(34.120)

This means that the power supply root mean square (RMS)
voltage values should be chosen high enough to account for the
maximum effects of the perturbations. This is almost the same
criterion adopted when calculating the RMS voltage values
needed with linear controllers. However, as the Veq voltage
contains the derivatives of the reference voltage, the system
will not be able to stay in sliding mode with a step as the
reference.

The switching law would be derived, considering that,
from Eq. (34.118) be (e) > 0. Therefore, from Eq. (34.97), if
S(exi , t ) > +ε, then vi(t ) = Veqmax , else if S(exi , t ) < −ε,
then vi(t ) = −Veqmax . However, because of the lack of gate
turn-off capability of the rectifier thyristors, power rectifiers
cannot generate the high-frequency switching voltage vi(t ),
since the statistical mean delay time is T /2p(T = 20 ms)
and reaches T /2 when switching from +Veqmax to −Veqmax .
To control mains switched rectifiers, the described constant-
frequency sliding-mode operation method is used, in which
the sliding surface S(exi , t ) instead of being compared to zero,
is compared to an auxiliary constant-frequency function r(t )
(Fig. 34.6b) synchronized with the mains frequency. The new
switching law is

If kpS(exi ,t )> r(t )+ι⇒ Trigger the next thyristor
If kpS(exi ,t )< r(t )−ι⇒ Do not trigger any

thyristor


⇒vi(t )

(34.121)

Since now S(exi , t ) is not near zero, but around some value
of r(t ), a steady-state error evc2av

appears (min[r(t )]/kp <

evc2av
< max[r(t )]/kp), as seen in Example 34.11. Increasing the

value of kp (toward the ideal saturation control) does not over-
come this drawback, since oscillations would appear even for
moderate kp gains, because of the rectifier dynamics. Instead,
the sliding surface (34.122), based on Eq. (34.99), should be
used. It contains an integral term, which, given the canoni-
cal controllability form and the Routh–Hurwitz property, is

the only nonzero term at steady state, enabling the complete
elimination of the steady-state error.

Si(exi , t ) =
∫

evc2
dt + k1v evc2

+ k1θeθ + k1γeγ + k1βeβ

(34.122)

To determine the k constants of Eq. (34.122) a pole-
placement technique is selected, according to a fourth-order
Bessel polynomial BE (s)m , m = 4, from Eq. (34.88), in order to
obtain the smallest possible response time with almost no over-
shoot. For a delay characteristic as flat as possible, the delay
tr is taken inversely proportional to a frequency fci just below
the lowest cutoff frequency (fci < 8.44 Hz) of the double LC
filter. For this fourth-order filter, the delay is tr = 2.8/(2πfci).
By choosing fci = 7 Hz (tr ≈ 64 ms), and dividing all the
Bessel polynomial terms by str , the characteristic polynomial
(34.123) is obtained:

Si(exi , s) = 1

str
+ 1 + 45

105
str + 10

105
s2t 2

r + 1

105
s3t 3

r

(34.123)

This polynomial must be applied to Eq. (34.122) to obtain
the four sliding functions needed to derive the thyristor trig-
ger pulses of the four three-phase half-wave rectifiers. These
sliding functions will enable the control of the output current
(il1 , il2 , il3 , and il4 ) of each half-wave rectifier, improving the
current sharing among them (Fig. 34.35b). Supposing equal
current share, the relation between the iL1 current and the
output currents of each threephase rectifier is iL1 = 4il1 =
4il2 = 4il3 = 4il4 . Therefore, for the nth half-wave three-phase
rectifier, since for n = 1 and n = 2, vc1 = vc11 and iL2 = 2il5
and for n = 3 and n = 4, vc1 = vc12 and iL2 = 2il6 , the four
sliding surfaces are (k1v = 1):

Si(exi , t )n =
[

k1v vc2r + 45tr

105
θr + 10t 2

r

105
γr + t 3

r

105
βr

+ 1

tr

∫
vc2r − vc2 dt −

(
k1v

C2L2
− 10t 2

r

105C2L2

)
vc2

− 10t 2
r

105C2L2
vc112

+
(

45tr

105C2
− t 3

r

105C2
2 L2

)
io

+
(

10t 2
r

105C2

)
dio
dt

+
(

t 3
r

105C2

)
d2io
dt 2

]/
4

−
[(

45tr

105C2
− t 3

r

105C2
2 L2

− t 3
r

105C1L2C2

)
il56

]/
2

−
(

t 3
r

105C1L2C2

)
iln (34.124)
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If an inexpensive analog controller is desired, the successive
time derivatives of the reference voltage and the output current
of Eq. (34.124) can be neglected (furthermore, their calcula-
tion is noise prone). Nonzero errors on the first, second, and
third-order derivatives of the controlled variable will appear,
worsening the response speed. However, the steady-state error
is not affected.

To implement the four equations (34.124), the variables
vc2 , vc11 , vc12 , io , il5 , il6 , il1 , il2 , il3 , and il4 must be measured.
Although this could be done easily, it is very convenient to
further simplify the practical controller, keeping its complexity
and cost at the level of linear controllers, while maintaining
the advantages of sliding mode. Therefore, the voltages vc11

and vc12 are assumed almost constant over one period of the
filter input current, and vc11 = vc12 = vc2 , meaning that il5 =
il6 = io/2. With these assumptions, valid as the values of C ′
and C2 are designed to provide an output voltage with very
low ripple, the new sliding-mode functions are

Si(exi , t )n ≈
1
tr

∫
vc2r − vc2dt + k1v (vc2r − vc2 ) + t 3

r
105

1
C1C2L2

io

4

−
(

t 3
r

105C1L2C2

)
iln (34.125)

These approximations disregard only the high-frequency
content of vc11 , vc12 , il5 , and il6 , and do not affect the rec-
tifier steady-state response, but the step response will be a
little slower, although still much faster (150 ms, Fig. 34.39)
than that obtained with linear controllers (280 ms, Fig. 34.38).
Regardless of all the approximations, the low switching fre-
quency of the rectifier would not allow the elimination of
the dynamic errors. As a benefit of these approximations, the
sliding-mode controller (Fig. 34.36a) will need only an extra
current sensor (or a current observer) and an extra opera-
tional amplifier in comparison with linear controllers derived
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FIGURE 34.36 (a) Sliding-mode controller block diagram and (b) linear control hierarchy for the 12-pulse rectifier.

hereafter (which need four current sensors and six operational
amplifiers). Compared to the total cost of the 12-pulse recti-
fier plus output filter, the control hardware cost is negligible
in both the cases, even for medium-power applications.

34.3.5.6 Average Current-mode Control of the
12-pulse Rectifier

For comparison purposes a PI-based controller structure is
designed (Fig. 34.36b), taking into account, that small mis-
matches of the line voltages or of the trigger angles can
completely destroy the current share of the four paralleled
rectifiers, inspite of the current equalizing inductances (l and
l ′). Output voltage control sensing only the output voltage
is, therefore, not feasible. Instead, the slow and fast manifold
approach is selected. For the fast manifold, four internal cur-
rent control loops guarantee the same dc current level in each
three-phase rectifier and limit the short-circuit currents. For
the output slow dynamics, an external cascaded output volt-
age control loop (Fig. 34.36b), measuring the voltage applied
to the load, is the minimum.

For a straightforward design, given the much slower dynam-
ics of the capacitor voltages compared to the input current,
the PI current controllers are calculated as shown in Exam-
ple 34.6, considering the capacitor voltage constant during a
switching period, and rt ≈ 1 � the intrinsic resistance of the
transformer windings, thyristor overlap, and inductor l . From
Eq. (34.59), Tz = l/rt ≈ 0.044 s. From, Eq. (34.62), with the
common assumptions, Tp ≈ 0.16kI s (p = 3). These values
guarantee a small overshoot (≈5%) and a current rise time of
approximately T /3.

To design the external output voltage control loop, each
current-controlled rectifier can be considered a voltage-
controlled current source iL1 (s)/4, since each half-wave rec-
tifier current response will be much faster than the filter
output voltage response. Therefore, in the equivalent circuit
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of Fig. 34.35b, the current source iL1 (s) substitutes the input
inductor, yielding the transfer function vc2 (s)/iL1 (s):

Vc2 (s)

iL1 (s)
= Ro

C2C1L2Ros3 + C1L2s2 + (C2Ro + C1Ro)s + 1
(34.126)

Given the real pole (p1 = −6.7) and two complex poles
(p2,3 = −6.65 ± j140.9) of Eq. (34.126), the PI voltage con-
troller zero (1/Tzv = p1) can be chosen with a value equal to
the transfer function real pole. The integral gain Tpv can be
determined using a root-locus analysis to determine the maxi-
mum gain, that still guarantees the stability of the closed-loop
controlled system. The critical gain for the PI was found to
be Tzv /Tpv ≈ 0.4, then Tpv > 0.37. The value Tpv ≈ 2 was
selected to obtain weak oscillations, together with almost no
overshoot.

The dynamic and steady-state responses of the output cur-
rents of the four rectifiers (il1 , il2 , il3 , il4 ) and the output voltage
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error.

vc2 were analyzed using a step input from 2 to 2.5 A applied
at t = 1.1 s, for the currents, and from 40 to 50 V for the
vc2 voltage. The PI current controllers (Fig. 34.37) show good
sharing of the total current, a slight overshoot (ζ = 0.7) and
response time 6.6 ms (T /p).

The open-loop voltage vc2 presents a rise time of 0.38 s. The
PI voltage controller (Fig. 34.38) shows a response time of
0.4 s, no overshoot. The four three-phase half-wave rectifier
output currents (il1 , il2 , il3 , and il4 ) present nearly the same
transient and steady-state values, with no very high current
peaks. These results validate the assumptions made in the PI
design.

The closed-loop performance of the fixed-frequency sliding-
mode controller (Fig. 34.39) shows that all the il1 , il2 , il3 ,
and il4 currents are almost equal and have peak values only
slightly higher than those obtained with the PI linear con-
trollers. The output voltage presents a much faster response
time (150 ms) than the PI linear controllers, negligible or no
steady-state error, and no overshoot. From these waveforms
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it can be concluded that the sliding-mode controller provides
a much more effective control of the rectifier, as the output
voltage response time is much lower than the obtained with PI
linear controllers, without significantly increasing the thyris-
tor currents, overshoots, or costs. Furthermore, sliding mode
is an elegant way to know the variables to be measured, and
to design all the controller and the modulator electronics.

EXAMPLE 34.13 Sliding-mode control of pulse width
modulation audio power amplifiers
Linear audio power amplifiers can be astonishing, but
have efficiencies as low as 15–20% with speech or music
signals. To improve the efficiency of audio systems while
preserving the quality, PWM switching power amplifiers,
enabling the reduction of the power-supply cost, vol-
ume, and weight and compensating the efficiency loss
of modern loudspeakers, are needed. Moreover, PWM
amplifiers can provide a complete digital solution for
audio power processing.

For high-fidelity systems, PWM audio amplifiers must
present flat passbands of at least 16–20 kHz (±0.5 dB),
distortions less than 0.1% at the rated output power,
fast dynamic response, and signal-to-noise ratios above
90 dB. This requires fast power semiconductors (usually
metal-oxide semiconductor field effect transistor (MOS-
FET) transistors), capable of switching at frequencies
near 500 kHz, and fast nonlinear controllers to provide
the precise and timely control actions needed to accom-
plish the mentioned requirements and to eliminate the
phase delays in the LC output filter and loudspeakers.

A low-cost PWM audio power amplifier, able to
provide over 80 W to 8 � loads (Vdd = 50 V), can be
obtained using a half-bridge power inverter (switching at
fPWM ≈ 450 kHz), coupled to an output filter for high-
frequency attenuation (Fig. 34.40). A low-sensitivity,

γ

vPWM

-Vdd

Q1

Q2

Vdd iQ1

iQ2

iD1

iD2

Level
Shifter

C2

vc1 vo

L1 L2

C1

iL1 iL2 ior1
Speaker

-1
-G

ZL

FIGURE 34.40 PWM audio amplifier with fourth-order Chebyshev
low-pass output filter and loudspeaker load.

doubly terminated passive ladder (double LC), low-pass
filter using fourth-order Chebyshev approximation
polynomials is selected, given its ability to meet, while
minimizing the number of inductors, the following
requirements: passband edge frequency 21 kHz, pass-
band ripple 0.5 dB, stopband edge frequency 300 kHz
and 90 dB minimum attenuation in the stopband (L1 =
80 µH; L2 = 85 µH; C1 = 1.7 µF; C2 = 820 nF;
R2 = 8 �; r1 = 0.47 �).

34.3.5.7 Modeling the PWM Audio Amplifier
The two half-bridge switches must always be in complemen-
tary states, to avoid power supply internal short-circuits. Their
state can be represented by the time-dependent variable γ ,
which is γ = 1 when Q1 is on and Q2 is off, and is γ = −1
when Q1 is off and Q2 is on.

Neglecting switch delays, on state semiconductor voltage
drops, auxiliary networks, and supposing small dead times,
the half-bridge output voltage (vPWM ) is vPWM = γVdd .
Considering the state variables and circuit components of
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Fig. 34.40, and modeling the loudspeaker load as a disturbance
represented by the current io (ensuring robustness to the fre-
quency dependent impedance of the speaker), the switched
state-space model of the PWM audio amplifier is

d

dt




iL1

vc1

iL2

vo


 =




−r1/L1 −1/L1 0 0
1/C1 0 −1/C1 0

0 1/L2 0 −1/L2

0 0 1/C2 0







iL1

vc1

iL2

vo




+




1/L1 0
0 0
0 0
0 −1/C2



[
γVdd

io

]
(34.127)

This model will be used to define the output voltage vo

controller.

34.3.5.8 Sliding-mode Control of the PWM Audio
Amplifier

The filter output voltage vo , divided by the amplifier gain
(1/kv ), must follow a reference vor . Defining the output error as
evo = vor − kv vo , and also using its time derivatives (eθ , eγ , eβ)
as a new state vector e = [evo , eθ , eγ , eβ]T , the system equa-
tions, in the phase canonical (or controllability) form, can be
written in the form

d

dt
[evo , eθ , eγ , eβ]T = [eθ , eγ , eβ, −f (evo , eθ , eγ , eβ) + pe (t )

− γVdd /C1L1C2L2]T (34.128)

Sliding-mode control of the output voltage will enable a
robust and reduced-order dynamics, independent of semicon-
ductors, power supply, filter, and load parameters. According
to Eqs. (34.91) and (34.128), the sliding surface is

S(evo , eθ , eγ , eβ, t ) = evo + kθeθ + kγeγ + kβeβ

= vor − kv vo + kθ

d
(
vor − kv vo

)
dt

+ kγ

d

dt

(
d
(
vor − kv vo

)
dt

)

+ kβ

d

dt

[
d

dt

(
d
(
vor − kv vo

)
dt

)]
= 0

(34.129)

In sliding mode, Eq. (34.129) confirms the amplifier gain
(vo/vor = 1/kv ). To obtain a stable system and the small-
est possible response time tr , a pole placement according to
a third-order Bessel polynomial is used. Taking tr inversely
proportional to a frequency just below the lowest cutoff

frequency (ω1) of the double LC filter (tr ≈ 2.8/ω1 ≈
2.8/(2π × 21 kHz)≈ 20 µs) and using Eq. (34.88) with m = 3,
the characteristic polynomial Eq. (34.130), verifying the
Routh–Hurwitz criterion is obtained.

S(e, s) = 1 + str + 6

15
(str )

2 + 1

15
(str )

3 (34.130)

From Eq. (34.97) the switching law for the control input at
time tk , γ(tk ), must be

γ(tk ) = sgn
{

S(e, tk ) + ε sgn
[
S(e, tk−1)

]}
(34.131)

To ensure reaching and existence conditions, the power sup-
ply voltage Vdd must be greater than the maximum required
mean value of the output voltage in a switching period
Vdd > (vPWMmax). The sliding-mode controller (Fig. 34.41) is
obtained from Eqs. (34.129–34.131) with kθ = tr , kγ = 6t 2

r /15,
kβ = t 3

r /15. The derivatives can be approximated by the block
diagram of Fig. 34.41b, were h is the oversampling period.

Fig. 34.42a shows the vPWM , vor , vo/10, and the error
10 × (vor − vo/10) waveforms for a 20 kHz sine input. The
overall behavior is much better than the obtained with the
sigma-delta controllers (Figs. 34.43 and 34.44) explained below
for comparison purposes. There is no 0.5 dB loss or phase
delay over the entire audio band; the Chebyshev filter behaves
as a maximally flat filter, with higher stopband attenuation.
Fig. 34.42b shows vPWM , vor , and 10 × (vor − vo/10) with a
1 kHz square input. There is almost no steady-state error and
almost no overshoot on the speaker voltage vo , attesting to the
speed of response (t ≈ 20 µs as designed, since, in contrast to
Example 34.12, no derivatives were neglected). The stability,
the system order reduction, and the sliding-mode controller
usefulness for the PWM audio amplifier are also shown.

34.3.5.9 Sigma Delta Controlled PWM Audio
Amplifier

Assume now the fourth-order Chebyshev low-pass filter, as
an ideal filter removing the high-frequency content of the
vPWM voltage. Then, the vPWM voltage can be considered as the
amplifier output. However, the discontinuous voltage vPWM =
γVdd is not a state variable and cannot follow the almost con-
tinuous reference vPWMr . The new error variable evPWM =
vPWMr − kvγVdd is always far from the zero value. Given
this nonzero error, the approach outlined in Section 34.3.4
can be used. The switching law remains Eq. (34.131), but the
new control law Eq. (34.132) is

S(evPWM , t ) = κ

∫
(vPWMr − kvγVdd )dt = 0 (34.132)
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FIGURE 34.41 (a) Sliding-mode controller for the PWM audio amplifier and (b) implementation of the derivative blocks.
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FIGURE 34.42 Sliding-mode controlled audio power amplifier performance (upper graphs show vPWM , lower graph traces 1 show vor (vor ≡ vi ),
lower graph traces 2 show vo/10, and lower graph traces 3 show 10×(vor − vo /10)): (a) response to a 20 kHz sine input, at 55 W output power and
(b) response to 1 kHz square wave input, at 100 W output power.
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FIGURE 34.43 (a) First-order sigma delta modulator and (b) second-order sigma delta modulator.

The κ parameter is calculated to impose the maxi-

mum switching frequency fPWM . Since κ
∫ 1/2fPWM

0 (vPWMrmax +
kv Vdd )dt = 2ε, we obtain

fPWM = κ(vPWMrmax + kv Vdd )/(4ε) (34.133)

Assuming that vPWMr is nearly constant over the switching
period 1/fPWM , Eq. (34.132) confirms the amplifier gain, since
vPWM = vPWMr /kv .

Practical implementation of this control strategy can be
done using an integrator with gain κ (κ≈1800), and a com-
parator with hysteresis ε (ε ≈ 6 mV), Fig. 34.43a. Such
an arrangement is called a first-order sigma-delta (��)
modulator.

Fig. 34.44a shows the vPWM , vor , and vo/10 waveforms for a
20 kHz sine input. The overall behavior is as expected, because
the practical filter and loudspeaker are not ideal, but notice the
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FIGURE 34.44 First-order sigma-delta audio amplifier performance (upper graphs show vPWM , lower graphs trace 1 show vor ≡ vi , lower graphs
trace 2 shows vo/10, and lower graphs trace 3 show 10×(vor − vo/10)): (a) response to a 20 kHz sine input, at 55 W output power and (b) response
to 1 kHz square wave input, at 100 W output power.

0.5 dB loss and phase delay of the speaker voltage vo , mainly
due to the output filter and speaker inductance. In Fig. 34.44b,
the vPWM , vor , vo/10, and error 10 × (vor − vo/10) for a 1 kHz
square input are shown. Note the oscillations and steady-state
error of the speaker voltage vo , due to the filter dynamics and
double termination.

A second-order sigma-delta modulator is a better compro-
mise between circuit complexity and signal-to-quantization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
×10−4 t[s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×10−4 t[s] 

(a) (b)

1 3 

2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
×10−3

−100

−50

0

50

100

t[s] 

vP
W

M
 [V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×10−3

−5

0

5

t[s]

1}
vi

, 2
}v

o/
10

, 3
}1

0*
(v

i-v
o/

10
) 

[V
]

−100

−50

0

50

100

vP
W

M
 [V

]

−5

0

5

1}
vi

, 2
}v

o/
10

, 3
}1

0*
(v

i-v
o/

10
) 

[V
]

1 

3 

2 

FIGURE 34.45 Second-order sigma-delta audio amplifier performance (upper graphs show vPWM , lower graphs trace 1 show vor ≡ vi , lower graphs
trace 2 show vo/10, and lower graphs trace 3 show 10×(vor − vo/10)): (a) response to 1 kHz square wave input, at 100 W output power and
(b) response to a 20 kHz sine input, at 55 W output power.

noise ratio. As the switching frequency of the two power
MOSFET (Fig. 34.40) cannot be further increased, the second-
order structure named “cascaded integrators with feedback”
(Fig. 34.43b) was selected, and designed to eliminate the step
response overshoot found in Fig. 34.44b.

Fig. 34.45a, for 1 kHz square input, shows much less over-
shoot and oscillations than Fig. 34.44b. However, the vPWM ,
vor , and vo/10 waveforms, for a 20 kHz sine input presented
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in Fig. 34.45b, show increased output voltage loss, com-
pared to the first-order sigma-delta modulator, since the
second-order modulator was designed to eliminate the vo

output voltage ringing (therefore reducing the amplifier band-
width). The obtained performances with these and other
sigma-delta structures are inferior to the sliding-mode perfor-
mances (Fig. 34.42). Sliding mode brings definite advantages
as the system order is reduced, flatter passbands are obtained,
power supply rejection ratio is increased, and the nonlinear
effects, together with the frequency-dependent phase delays,
are cancelled out.

EXAMPLE 34.14 Sliding-mode control of near unity
power factor PWM rectifiers
Boost-type voltage-sourced three-phase rectifiers
(Fig. 34.46) are multiple-input multiple-output (MIMO)
systems capable of bidirectional power flow, near unity
power factor operation, and almost sinusoidal input cur-
rents, and can behave as ac/dc power supplies or power
factor compensators.

The fast power semiconductors used (usually MOS-
FETs or IGBTs) can switch at frequencies much higher
than the mains frequency, enabling the voltage controller
to provide an output voltage with fast dynamic response.

Su1 

C
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R L

R L
~  

R L
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S12S11
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S13

oi

v1

v2

v3
i2

i3

IaR1
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~  

~  

Rc

 

Sa

i1

FIGURE 34.46 Voltage-sourced PWM rectifier with IGBTs and test
load.

34.3.5.10 Modeling the PWM Boost Rectifier
Neglecting switch delays and dead times, the states of the
switches of the kth inverter leg (Fig. 34.46) can be represented
by the time-dependent nonlinear variables γk , defined as

γk =
{

1> if Suk is on and Slk is off

0> if Suk is off and Slk is on
(34.134)

Consider the displayed variables of the circuit (Fig. 34.46),
where L is the value of the boost inductors, R their resistance,
C the value of the output capacitor, and Rc its equivalent series
resistance (ESR). Neglecting semiconductor voltage drops,
leakage currents, and auxiliary networks, the application of

Kirchhoff laws (taking the load current io as a time-dependent
perturbation) yields the following switched state-space model
of the boost rectifier:

d

dt




i1
i2
i3
vo


=




−R/L 0 0 −2γ1 +γ2 +γ3/3L

0 −R/L 0 −2γ2 +γ3 +γ1/3L

0 0 −R/L −2γ3 +γ1 +γ2/3L

A41 A42 A43 A44







i1
i2
i3
vo




+




1/L 0 0 0 0

0 1/L 0 0 0

0 0 1/L 0 0

γ1Rc /L γ2Rc /L γ3Rc /L −1/C −Rc







v1

v2

v3

io
dio/dt




(34.135)

where A41 = γ1

(
1
C − RRc

L

)
; A42 = γ2

(
1
C − RRc

L

)
; A43 =

γ3

(
1
C − RRc

L

)
; A44 = −2Rc (γ1(γ1−γ2)+γ2(γ2−γ3)+γ3(γ3−γ1))

3L .

Since the input voltage sources have no neutral connection,
the preceding model can be simplified, eliminating one equa-
tion. Using the relationship (34.136) between the fixed frames
x1, 2, 3 and xα,β, in Eq. (34.135), the state-space model (34.137),
in the α, β frame, is obtained.

[
x1

x2

]
=
[ √

2/3 0
−√

1/6
√

1/2

] [
xα

xβ

]
(34.136)

d

dt


iα

iβ
vo


 =




−R/L ω −γα/L

0 −R/L −γβ/L

Aα
31 Aα

32 Aα
33




iα

iβ
vo




+




1/L 0 0 0

0 1/L 0 0

γαRc /L γβRc /L −1/C −Rc







vα

vβ

io
dio/dt




(34.137)

where Aα
31 = γα

(
1
C − RRc

L

)
; Aα

32 = γβ

(
1
C − RRc

L

)
;

Aα
33 = −Rc

(
γ2
α+γ2

β

)
L .

34.3.5.11 Sliding-mode Control of the PWM Rectifier
The model (34.137) is nonlinear and time-variant. Applying
the Park transformation (34.138), using a frequency ω rotating
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reference frame synchronized with the mains (with the q com-
ponent of the supply voltages equal to zero), the nonlinear,
time-invariant model (34.139) is written:

[
ia
ib

]
=
[

cos(ωt ) − sin(ωt )
sin(ωt ) cos(ωt )

] [
id
iq

]
(34.138)

d

dt


id

iq
vo


 =




−R/L ω −γd /L

−ω −R/L −γq/L

Ad
31 Ad

32 Ad
33




id

iq
vo




+




1/L 0 0 0

0 1/L 0 0

γd Rc /L γqRc /L −1/C −Rc







vd

vq

io
diodt




(34.139)

where Ad
31 = γd

(
1

C
− RRc

L

)
; Ad

32 = γq

(
1

C
− RRc

L

)
;

Ad
33 =

−Rc

(
γ2

d + γ2
q

)

L
.

This state-space model can be used to obtain the feedback
controllers for the PWM boost rectifier. Considering the out-
put voltage vo and the iq current as the controlled outputs and
γd , γq the control inputs (MIMO system), the input–output
linearization of Eq. (34.72) gives the state-space equations in
the controllability canonical form (34.140):

diq
dt

= −ωid − R

L
iq − γq

L
vo + 1

L
vq

dvo

dt
= θ

dθ

dt
=

R + Rc

(
γ2

d + γ2
q

)

L
θ − γ2

d + γ2
q

LC
vo

+ γd vd + γqvq

LC
− Rio

LC
−
(

1

C
+ RRc

L

)
dio
dt

(34.140)

+ ω

(
1

C
− RRc

L

) (
γd iq − γqid

)− Rc
d2io
dt 2

where

θ =
(

1

C
− RRc

L

) (
γd id + γqiq

)−
Rc

(
γ2

d + γ2
q

)

L
vo

+ Rc

L

(
γd vd + γqvq

)− io
C

− Rc
dio
dt

.

Using the rectifier overall power balance (from Tellegen’s
theorem, the converter is conservative, i.e. the power deliv-
ered to the load or dissipated in the converter intrinsic devices

equals the input power), and neglecting the switching and
output capacitor losses, vd id + vqiq = voio + Ri2

d . Suppos-
ing unity power factor (iqr ≈ 0), and the output vo at steady

state, γd id + γqiq ≈ io , vd = √
3VRMS , vq = 0, γq ≈ vq/vo ,

γd ≈ (vd − Rid )/vo . Then, from Eqs. (34.140) and (34.91), the
following two sliding surfaces can be derived:

Sq(eiq , t ) = keiq (iqr − iq) = 0 (34.141)

Sd (evo , eθ , t )≈
[
β−1(vor −vo)+ dvor

dt
+ 1

C
io +Rc

dio
dt

]

× LC

L−CRRc

vo√
3VRMS −Rid

− id = idr − id =0

(34.142)

where β−1 is the time constant of the desired first-order
response of output voltage vo (β � T > 0). For the syn-
thesis of the closed-loop control system, notice that the terms
of Eq. (34.142) inside the square brackets can be assumed as
the id reference current idr . Furthermore, from Eqs. (34.141)
and (34.142) it is seen that the current control loops for id and
iq are needed. Considering Eqs. (34.138) and (34.136), the two
sliding surfaces can be written

Sα(eiα , t ) = iαr − iα = 0 (34.143)

Sβ(eiβ , t ) = iβr − iβ = 0 (34.144)

The switching laws relating the sliding surfaces (34.143,
34.144) with the switching variables γk are




If Sαβ(eiαβ ,t ) > ε then iαβr > iαβ hence choose γk to

increase the iαβ current

If Sαβ(eiαβ ,t ) < −ε then iαβr < iαβ hence choose γk to

decrease the iαβ current

(34.145)

The practical implementation of this switching strategy
could be accomplished using three independent two-level hys-
teresis comparators. However, this might introduce limit cycles
as only two line currents are independent. Therefore, the con-
trol laws (34.143, 34.144) can be implemented using the block
diagram of Fig. 34.47a, with d , q/α, β (from Eq. (34.138)) and
1,2,3/α,β (from Eq. (34.136)) transformations and two three-
level hysteretic comparators with equivalent hysteresis ε and
ρ to limit the maximum switching frequency. A limiter is
included to bound the id reference current to idmax , keeping
the input line currents within a safe value. This helps to elimi-
nate the nonminimum-phase behavior (outside sliding mode)
when large transients are present, while providing short-circuit
proof operation.
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FIGURE 34.47 (a) Sliding-mode PWM controller modulator for the unity power factor three-phase PWM rectifier and (b) α, β space vector
representation of the PWM bridge rectifier leg voltages.

34.3.5.12 α, β Space Vector Current Modulator
Depending on the values of γk , the bridge rectifier leg out-
put voltages can assume only eight possible distinct states
represented as voltage vectors in the α, β reference frame
(Fig. 34.47b), for sources with isolated neutral.

With only two independent currents, two three-level hys-
teresis comparators, for the current errors, must be used in
order to accurately select all eight available voltage vectors.
Each three-level comparator can be obtained by summing
the outputs of two comparators with two levels each. One
of these two comparators (δLα, δLβ) has a wide hysteresis
width and the other (δNα, δNβ) has a narrower hystere-
sis width. The hysteresis bands are represented by ε and ρ.
Table 34.1 represents all possible output combinations of
the resulting four two-level comparators, their sums giving

TABLE 34.2 Two-level and three-level comparator results, showing corresponding vector choice, corresponding γk and vector α, β component
voltages; vectors are mapped in Fig. 34.47b

δLα δNα δLβ δNβ δα δβ Vector γ1 γ2 γ3 vα vβ

−0.5 −0.5 −0.5 −0.5 −1 −1 2 1 1 0 vo/
√

6 vo/
√

2
0.5 −0.5 −0.5 −0.5 0 −1 2 1 1 0 vo/

√
6 vo/

√
2

0.5 0.5 −0.5 −0.5 1 −1 3 0 1 0 −vo/
√

6 vo/
√

2
−0.5 0.5 −0.5 −0.5 0 −1 3 0 1 0 −vo/

√
6 vo/

√
2

−0.5 0.5 0.5 −0.5 0 0 0 or 7 0 or 1 0 or 1 0 or 1 0 0
0.5 0.5 0.5 −0.5 1 0 4 0 1 1 −√

2/3vo 0
0.5 −0.5 0.5 −0.5 0 0 0 or 7 0 or 1 0 or 1 0 or 1 0 0

−0.5 −0.5 0.5 −0.5 −1 0 1 1 0 0
√

2/3vo 0
−0.5 −0.5 0.5 0.5 −1 1 6 1 0 1 vo/

√
6 −vo/

√
2

0.5 −0.5 0.5 0.5 0 1 6 1 0 1 vo/
√

6 −vo/
√

2
0.5 0.5 0.5 0.5 1 1 5 0 0 1 −vo/

√
6 −vo/

√
2

−0.5 0.5 0.5 0.5 0 1 5 0 0 1 −vo/
√

6 −vo/
√

2
−0.5 0.5 −0.5 0.5 0 0 0 or 7 0 or 1 0 or 1 0 or 1 0 0

0.5 0.5 −0.5 0.5 1 0 4 0 1 1 −√
2/3vo 0

0.5 −0.5 −0.5 0.5 0 0 0 or 7 0 or 1 0 or 1 0 or 1 0 0
−0.5 −0.5 −0.5 0.5 −1 0 1 1 0 0

√
2/3vo 0

the two three-level comparators (δα, δβ), plus the voltage
vector needed to accomplish the current tracking strategy
(iα,βr −iα,β) = 0 (ensuring (iα,βr −iα,β)×d(iα,βr −iα,β)/dt < 0),
plus the γk variables and the α, β voltage components.

From the analysis of the PWM boost rectifier it is concluded
that, if, for example, the voltage vector 2 is applied (γ1 = 1,
γ2 = 1, γ3 = 0), in boost operation, the currents iα and iβ
will both decrease. Oppositely, if the voltage vector 5 (γ1 = 0,
γ2 = 0, γ3 = 1) is applied, the currents iα and iβ will both
increase. Therefore, vector 2 should be selected when both iα
and iβ currents are above their respective references, that is for
δα = −1, δβ = −1, whereas vector 5 must be chosen when
both iα and iβ currents are under their respective references,
or for δα = 1, δβ = 1. Nearly all the outputs of Table 34.2 can
be filled using this kind of reasoning.



[15:56 5/9/2006 Chapter-34.tex] RASHID: Power Electronics Handbook, 2e Page: 978 935–998

978 J. F. Silva and S. F. Pinto

The cases where δα = 0, δβ = −1, the vector is selected
upon the value of the iα current error (if δLα > 0 and δNα < 0
then vector 2, if δLα < 0 and δNα > 0 then vector 3). When
δα = 0, δβ = 1, if δLα > 0 and δNα < 0 then vector 6, else
if δLα < 0 and δNα > 0 then vector 5. The vectors 0 and 7
are selected in order to minimize the switching frequency (if
two of the three upper switches are on, then vector 7, oth-
erwise vector 0). The space-vector decoder can be stored in a
lookup table (or in an EPROM) whose inputs are the four two-
level comparator outputs and the logic result of the operations
needed to select between vectors 0 and 7.

34.3.5.13 PI Output Voltage Control of the
Current-mode PWM Rectifier

Using the α, β current-mode hysteresis modulators to enforce
the id and iq currents to follow their reference values, idr , iqr

(the values of L and C are such that the id and iq currents
usually exhibit a very fast dynamics compared to the slow
dynamics of vo), a first-order model (34.146) of the rectifier
output voltage can be obtained from Eq. (34.73).

dvo

dt
=
(

1

C
− RRc

L

) (
γd idr + γqiqr

)−
Rc

(
γ2

d + γ2
q

)

L
vo

+ Rc

L

(
γd vd + γqvq

)− io
C

− Rc
dio
dt

(34.146)

Assuming now a pure resistor load R1 = vo/io , and a mean
delay Td between the id current and the reference idr , con-
tinuous transfer functions result for the id current (id =
idr (1+sT d )−1) and for the vo voltage (vo = kAid /(1+skB) with
kA and kB obtained from Eq. (34.146)). Therefore, using the
same approach as Examples 34.6, 34.8, and 34.11, a linear PI
regulator, with gains Kp and Ki (34.147), sampling the error
between the output voltage reference vor and the output vo ,
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FIGURE 34.48 α, β space vector current modulator operation at near unity power factor: (a) simulation result (i1r + 30; i2r + 30; 2×i1; 2×i2 − 30)
and (b) experimental result (1→i1r , 2→i2r (10 A/div); 3→i1, 4→i2 (5 A/div)).

can be designed to provide a voltage proportional (kI ) to the
reference current idr (idr = (Kp + Ki/s)kI (vor − vo)).

Kp = R1 + Rc

4ζ2Td R1K1γd (1/C − RRc /L)

Ki =
(

Rc (γ2
d + γ2

q )/L
)

+ (1/R1C)

4ζ2Td K1γd (1/C − RRc /L)

(34.147)

These PI regulator parameters depend on the load resistance
R1, on the rectifier parameters (C , Rc , L, R), on the rectifier
operating point γd , on the mean delay time Td , and on the
required damping factor ζ. Therefore, the expected response
can only be obtained with the nominal load and input voltages,
the line current dynamics depending on the Kp and Ki gains.

Results (Fig. 34.48) obtained with the values VRMS ≈ 70 V,
L ≈ 1.1 mH, R ≈ 0.1 �, C ≈ 2000 µF with equivalent series
resistance ESR≈ 0.1 � (Rc ≈ 0.1 �), R1 ≈ 25 �, R2 ≈ 12 �,
β = 0.0012, Kp = 1.2, Ki = 100, kI = 1, show that the α, β
space vector current modulator ensures the current tracking
needed (Fig. 34.48) [17]. The vo step response reveals a faster
sliding-mode controller and the correct design of the current
mode/PI controller parameters. The robustness property of the
sliding-mode controlled output vo , compared to the current
mode/PI, is shown in Fig. 34.49.

EXAMPLE 34.15 Sliding-mode controllers for multi-
level inverters
Diode clamped multilevel inverters (Fig. 34.50) are the
converters of choice for high-voltage high-power dc/ac
or ac/ac (with dc link) applications, as the active semi-
conductors (usually gate turn-off thyristors (GTO) or
IGBT transistors) of n-level power conversion systems,
must withstand only a fraction (normally Ucc /(n − 1))
of the total supply voltage Ucc . Moreover, the out-
put voltage of multilevel converters, being staircase-like
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FIGURE 34.50 (a) Single-phase, neutral point clamped, three-level inverter with IGBTs and (b) three-phase, neutral-clamped, three-level inverter.

waveforms with n steps, features lower harmonic distor-
tion compared to the two-level waveforms with the same
switching frequency.

The advantages of multilevel converters are paid
into the price of the capacitor supply voltage dividers
(Fig. 34.51) and voltage equalization circuits, into the
cost of extra power supply arrangements (Fig. 34.51c),
and into increased control complexity. This example
shows how to extend the two-level switching law (34.97)
to n-level converters, and how to equalize the voltage of
the capacitive dividers.

Considering single-phase three-level inverters
(Fig. 34.50a), the open-loop control of the output
voltage can be made using three-level SWPWM. The
two-level modulator, seen in Example 34.9, can be
easily extended (Fig. 34.52a) to generate the γIII com-
mand (Fig. 34.52b) to three-level inverter legs, from the
two-level γII signal, using the following relation:

γIII = γII(mi sin(ωt ) − sgn(mi sin(ωt ))/2 − r(t )/2)

− 1/2 + sgn(mi sin(ωt ))/2 (34.148)

The required three-level SWPWM modulators for the
output voltage synthesis seldom take into account the
semiconductors and the capacitor voltage divider non-
ideal characteristics. Consequently, the capacitor voltage
divider tends to drift, one capacitor being overcharged,
the other discharged, and an asymmetry appears in the
currents of the power supply. A steady-state error in the
output voltage can also be present. Sliding-mode control
can provide the optimum switching timing between all
the converter levels, together with robustness to supply
voltage disturbances, semiconductor non-idealities, and
load parameters.

A. Sliding-mode switching law For a variable-structure sys-
tem where the control input ui(t ) can present n levels, consider
the n values of the integer variable γ , being −(n − 1)/2 ≤
γ ≤ (n − 1)/2 and ui(t ) = γUcc /(n − 1), dependent on the
topology and on the conducting semiconductors. To ensure
the sliding-mode manifold invariance condition (34.92) and
the reaching mode behavior, the switching strategy γ(tk+1)
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for the time instant tk+1, considering the value of γ(tk )
must be

γ(tk+1) =




γ(tk ) + 1 if S(exi , t ) > ε ∧ Ṡ(exi , t )

> ε ∧ γ(tk ) < (n − 1)/2

γ(tk ) − 1 if S(exi , t ) < −ε ∧ Ṡ(exi , t )

< −ε ∧ γ(tk ) > −(n − 1)/2

(34.149)

This switching law can be implemented as depicted in
Fig. 34.53.

34.3.5.14 Control of the Output Voltage in
Single-phase Multilevel Converters

To control the inverter output voltage, in closed-loop, in
diode-clamped multilevel inverters with n levels and supply

voltage Ucc , a control law similar to Eq. (34.132), S(euo , t ) =
κ
∫ (

uor − kvγ(tk )Ucc /(n − 1)
)
dt = 0, is suitable.

Figure 34.54a shows the waveforms of a five-level sliding-
mode controlled inverter, namely the input sinus voltage,
the generated output staircase wave, and the sliding-surface
instantaneous error. This error is always within a band cen-
tered around the zero value and presents zero mean value,
which is not the case of sigma-delta modulators followed by
n-level quantizers, where the error presents an offset mean
value in each half period.

Experimental multilevel converters always show capacitor
voltage unbalances (Fig. 34.54b) due to small differences
between semiconductor voltage drops and circuitry offsets.
To obtain capacitor voltage equalization, the voltage error
(vc2 −Ucc /2) is fed back to the controller (Fig. 34.55a) to coun-
teract the circuitry offsets. Experimental results (Fig. 34.54c)
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clearly show the effectiveness of the correction made. The small
steady-state error, between the voltages of the two capacitors,
still present, could be eliminated using an integral regulator
(Fig. 34.55b).

Figure 34.56 confirms the robustness of the sliding-mode
controller to power supply disturbances.

34.3.5.15 Output Current Control in Single-phase
Multilevel Converters

Considering an inductive load with current iL , the control law
(34.107) and the switching law of (34.159), should be used
for single-phase multilevel inverters. Results obtained using
the capacitor voltage equalization principle just described are
shown in Fig. 34.57.
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EXAMPLE 34.16 Sliding-mode controllers for three-
phase multilevel inverters
Three-phase n-level inverters (Fig. 34.58) are suitable
for high-voltage, high-power dc/ac applications, such
as modern high-speed railway traction drives, as the
controlled turn-off semiconductors must block only a
fraction (normally Udc /(n − 1)) of the total supply
voltage Udc .

This example presents a real-time modulator for the
control of the three output voltages and capacitor volt-
age equalization, based on the use of sliding mode and
space vectors represented in the α, β frame. Capacitor
voltage equalization is done with the proper selection of
redundant space vectors.

34.3.5.16 Output Voltage Control in Multilevel
Converters

To guarantee the topological constraints of this converter and
the correct sharing of the Udc voltage by the semiconduc-
tors, the switching strategy for the k leg (k ∈ {1, 2, 3}) must

ensure complementary states to switches Sk1 and Sk3. The same
restriction applies for Sk2, Sk4. Neglecting switching delays,
dead times, on-state semiconductor voltage drops, snubber
networks, and power supply variations, supposing small dead
times and equal capacitor voltages UC1 = UC2 = Udc /2,
and using the time-dependent switching variable γk (t ), the
leg output voltage Uk (Fig. 34.58) will be Uk = γk (t )Udc /2,
with

γk (t ) =




1 if Sk1 ∧ Sk2 are ON ∧ Sk3 ∧ Sk4 are OFF

0 if Sk2 ∧ Sk3 are ON ∧ Sk1 ∧ Sk4 are OFF

−1 if Sk3 ∧ Sk4 are ON ∧ Sk1 ∧ Sk2 are OFF

(34.150)

The converter output voltages USk of vector US can be
expressed

US =

 2/3 −1/3 −1/3

−1/3 2/3 −1/3
−1/3 −1/3 2/3




γ1

γ2

γ3


 Udc

2
(34.151)

The application of the Concordia transformation US1,2,3 =
[C] USα,β,o (Eq. (34.152) to Eq. (34.151))


US1

US2

US3


 =

√
2

3
·

 1 0 1/

√
2

−1/2
√

3/2 1/
√

2
−1/2 −√

3/2 1/
√

2




USα

USβ

USo


 (34.152)

gives the output voltage vector in the α, β coordinates USα,β :

USα,β =
[

USα

USβ

]
= √

2/3

[
1 −1/2 −1/2

0
√

3/2 −√
3/2

]
�1

�2

�3




Udc

2
=
[
�α

�β

]
Udc

2
(34.153)

where

�1 = 2

3
γ1 − 1

3
γ2 − 1

3
γ3; �2 = 2

3
γ2 − 1

3
γ3 − 1

3
γ1;

�3 = 2

3
γ3 − 1

3
γ1 − 1

3
γ2

(34.154)
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The output voltage vector in the α, β coordinates USα,β is
discontinuous. A suitable state variable for this output can be
its average value ŪSα,β during one switching period:

ŪSα,β = 1

T

∫ T

0
USα,β dt = 1

T

∫ T

0
�α,β

Udc

2
dt (34.155)

The controllable canonical form is

d

dt
ŪSα,β = USα,β

T
= �α,β

T

Udc

2
(34.156)

Considering the control goal ŪSα,β = ŪSα,βref
and Eq. (34.91),

the sliding surface is

S(eα,β,t )=
ϕ∑

o=1

kαβo eα,βo =kα,β1 eα,β1 =kα,β1

(
ŪSα,βref

−ŪSα,β

)

= kα,β

T

∫ T

0

(
USα,βref −USα,β

)
dt =0 (34.157)

To ensure reaching mode behavior, and sliding-mode
stability (34.92), as the first derivative of Eq. (34.157),
Ṡ(eα,β, t ), is

Ṡ(eα,β, t ) = kα,β

T

(
USα,βref − USα,β

)
(34.158)

The switching law is

S(eα,β, t ) > 0 ⇒ Ṡ(eα,β, t ) < 0 ⇒ USα,β > USα,βref

S(eα,β, t ) < 0 ⇒ Ṡ(eα,β, t ) > 0 ⇒ USα,β < USα,βref

(34.159)

This switching strategy must select the proper values
of Usα,β from the available outputs. As each inverter leg

(Fig. 34.58) can deliver one of the three possible output volt-
ages (Udc /2; 0; −Udc /2), all the 27 possible output voltage
vectors listed in Table 34.3 can be represented in the α, β frame
of Fig. 34.59 (in per units, 1 p.u. = Udc ). There are nine differ-
ent levels for the α space vector component and only five for
the β component. However, considering any particular value
of α (or β) component, there are at most five levels available
in the remaining orthogonal component. From the load view-
point, the 27 space vectors of Table 34.3 define only 19 distinct
space positions (Fig. 34.59).

To select one of these 19 positions from the control law
(34.157) and the switching law of Eq. (34.159), two five-level
hysteretic comparators (Fig. 34.53b) must be used (52 = 25).
Their outputs are the integer variables λα and λβ, denoted λα,β

(λα, λβ ∈ {−2; −1; 0; 1; 2}) corresponding to the five selectable
levels of �α and �β. Considering the sliding-mode stability,
λα,β, at time step j + 1, is given by Eq. (34.160), knowing
their previous values at step j . This means that the output
level is increased (decreased) if the error and its derivative are
both positive (negative), provided the maximum (minimum)
output level is not exceeded.




(λα,β)j+1 = (λα,β)j + 1 if S(eα,β, t ) > ε ∧ Ṡ(eα,β, t )

> ε ∧ (λα,β)j < 2

(λα,β)j+1 = (λα,β)j − 1 if S(eα,β, t ) < −ε ∧ Ṡ(eα,β, t )

< −ε ∧ (λα,β)j > −2

(34.160)

The available space vectors must be chosen not only to
reduce the mean output voltage errors, but also to guaran-
tee transitions only between the adjacent levels, to minimize
the capacitor voltage unbalance, to minimize the switching
frequency, to observe minimum on or off times if applicable,
and to equally stress all the semiconductors.
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TABLE 34.3 Vectors of the three-phase three-level converter, switching variables γk , switch states skj , and the corresponding output voltages, line
to neutral point, line-to-line, and α, β components in per units

Vector γ1 γ2 γ3 S11 S12 S13 S14 S21 S22 S23 S24 S31 S32 S33 S34 U 1 U 2 U 3 U 12 U 23 U 31 U sα/Udc U sβ/Udc

1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 Udc /2 Udc /2 Udc /2 0 0 0 0.00 0.00
2 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 Udc /2 Udc /2 0 0 Udc /2 −Udc /2 0.20 0.35
3 1 1 −1 1 1 0 0 1 1 0 0 0 0 1 1 Udc /2 Udc /2 −Udc /2 0 Udc −Udc 0.41 0.71
4 1 0 −1 1 1 0 0 0 1 1 0 0 0 1 1 Udc /2 0 −Udc /2 Udc /2 Udc /2 −Udc 0.61 0.35
5 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 Udc /2 0 0 Udc /2 0 −Udc /2 0.41 0.00
6 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 Udc /2 0 Udc /2 Udc /2 −Udc /2 0 0.20 −0.35
7 1 −1 1 1 1 0 0 0 0 1 1 1 1 0 0 Udc /2 −Udc /2 Udc /2 Udc −Udc 0 0.41 −0.71
8 1 −1 0 1 1 0 0 0 0 1 1 0 1 1 0 Udc /2 −Udc /2 0 Udc −Udc /2 −Udc /2 0.61 −0.35
9 1 −1 −1 1 1 0 0 0 0 1 1 0 0 1 1 Udc /2 −Udc /2 −Udc /2 Udc 0 −Udc 0.82 0.00
10 0 −1 −1 0 1 1 0 0 0 1 1 0 0 1 1 0 −Udc /2 −Udc /2 Udc /2 0 −Udc /2 0.41 0.00
11 0 −1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 −Udc /2 0 Udc /2 −Udc /2 0 0.20 −0.35
12 0 −1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 −Udc /2 Udc /2 Udc /2 −Udc Udc /2 0.00 −0.71
13 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 Udc /2 0 −Udc /2 Udc /2 −0.20 −0.35
14 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0.00 0.00
15 0 0 −1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 −Udc /2 0 Udc /2 −Udc /2 0.20 0.35
16 0 1 −1 0 1 1 0 1 1 0 0 0 0 1 1 0 Udc /2 −Udc /2 −Udc /2 Udc −Udc /2 0.00 0.71
17 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 Udc /2 0 −Udc /2 Udc /2 0 −0.20 0.35
18 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 Udc /2 Udc /2 −Udc /2 0 Udc /2 −0.41 0.00
19 −1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 −Udc /2 Udc /2 Udc /2 −Udc 0 Udc −0.82 0.00
20 −1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 −Udc /2 Udc /2 0 −Udc Udc Udc /2 −0.61 0.35
21 −1 1 −1 0 0 1 1 1 1 0 0 0 0 1 1 −Udc /2 Udc /2 −Udc /2 −Udc Udc 0 −0.41 0.71
22 −1 0 −1 0 0 1 1 0 1 1 0 0 0 1 1 −Udc /2 0 −Udc /2 −Udc /2 Udc /2 0 −0.20 0.35
23 −1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 −Udc /2 0 0 −Udc /2 0 Udc /2 −0.41 0.00
24 −1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 −Udc /2 0 Udc /2 −Udc /2 −Udc /2 Udc −0.61 −0.35
25 −1 −1 1 0 0 1 1 0 0 1 1 1 1 0 0 −Udc /2 −Udc /2 Udc /2 0 −Udc /2 Udc −0.41 −0.71
26 −1 −1 0 0 0 1 1 0 0 1 1 0 1 1 0 −Udc /2 −Udc /2 0 0 −Udc /2 Udc /2 −0.20 −0.35
27 −1 −1 −1 0 0 1 1 0 0 1 1 0 0 1 1 −Udc /2 −Udc /2 −Udc /2 0 0 0 0.00 0.00
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FIGURE 34.59 Output voltage vectors (1 to 27) of three-phase, neutral-
clamped three-level inverters, in the α, β frame.

Using Eq. (34.160) and the control laws S(eα,β,t )
Eq. (34.157), Tables 34.4 and 34.5 can be used to choose
the correct voltage vector in order to ensure stability, output
voltage tracking, and DC capacitor voltage equalization. The
vector with α, β components corresponding to the levels of the

TABLE 34.4 Switching table to be used if (UC1 − UC2) > εeU in
the inverter mode, or (UC1 − UC2) < −εeU in the regenerative mode,
showing vector selection upon the variables λα, λβ

λβ\λα −2 −1 0 1 2

−2 25 25 12 7 7
−1 24 13 13;6 6 8

0 19 18 1;14;27 5 9
1 20 17 17;2 2 4
2 21 21 16 3 3

TABLE 34.5 Switching table to be used if (UC1 − UC2) > εeU in
the regenerative mode, or (UC1 − UC2) < −εeU in the inverter mode,
showing vector selection upon the variables λα, λβ

λβ/λα −2 −1 0 1 2

−2 25 25 12 7 7
−1 24 26 26;11 11 8

0 19 23 1;14;27 10 9
1 20 22 22;15 15 4
2 21 21 16 3 3
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pair λβ, λα is selected, provided that the adjacent transitions on
inverter legs are obtained. If there is no directly corresponding
vector, then the nearest vector guaranteeing adjacent transi-
tions is selected. If a zero vector must be applied, then, one of
the three zero vectors (1, 14, 27) is selected, to minimize the
switching frequency. If more than one vector is the nearest,
then, one of them is selected to equalize the capacitor voltages,
as shown next.

34.3.5.17 DC Capacitor Voltage Equalization
The discrete values of λα,β allow 25 different combinations. As
only 19 are distinct from the load viewpoint, the extra ones can
be used to select vectors that are able to equalize the capacitor
voltages (UC1 = UC2 = Udc /2).

Considering the control goal UC1 = UC2, since the first
derivatives of UC1 and UC2 Eq. (34.161) directly depend on
the γk (t ) control inputs, from Eq. (34.91) the sliding surface
is given by Eq. (34.162), where kU is a positive gain.

d

dt

[
UC1

UC2

]
=
[− γ1(1+γ1)

2C1
− γ2(1+γ2)

2C1
− γ3(1+γ3)

2C1

1
C1

− γ1(1−γ1)
2C2

− γ2(1−γ2)
2C2

− γ3(1−γ3)
2C2

1
C2

]
i1
i2
i3
idc




(34.161)

S(eUc ,t )=kU eUc (t )=kU (UC1 −UC2)=0 (34.162)

The first derivative of UC1 − UC2 (the sliding surface) is
(Fig. 34.58 with C1 = C2 = C):

d

dt
eUc = iC1

C1
− iC2

C2
= in

C
= (γ2

3 − γ2
1 )i1 + (γ2

3 − γ2
2 )i2

C
(34.163)

To ensure reaching mode behavior and sliding-mode stabil-
ity, from Eq. (34.92), considering a small enough eUc (t ) error,
εeU , the switching law is

S(eUc , t ) > εeU ⇒ Ṡ(eUc , t ) < 0 ⇒ in < 0

S(eUc , t ) < −εeU ⇒ Ṡ(eUc , t ) > 0 ⇒ in > 0
(34.164)

From circuit analysis, it can be seen that vectors {2, 5, 6, 13,
17, 18} result in the discharge of capacitor C1, if the converter
operates in inverter mode, or in the charge of C1, if the con-
verter operates in boost-rectifier (regenerative) mode. Similar
reasoning can be applied for vectors {10, 11, 15, 22, 23, 26}
and capacitor C2, since this vector set give in currents with
opposite sign relatively to the set {2, 5, 6, 13, 17, 18}. There-
fore, considering the vector [ϒ1, ϒ2] = [(γ2

1 − γ2
3 ), (γ2

2 − γ2
3 )]

the switching law is:

IF (UC1 − UC2) > εeU

THEN




IF the candidate vector from {2, 5, 6, 13, 17, 18}

gives (ϒ1i1 + ϒ2i2) > 0, THEN choose the vector

according to λα,β on Table 34.4;

ELSE, the candidate vector of {10, 11, 15, 22, 23,

26} gives (ϒ1i1 + ϒ2i2) > 0, the vector being

chosen according to λα,β from (table 34.5)

IF (UC1 − UC2) < −εeU

THEN




IF the candidate vector from {2, 5, 6, 13, 17, 18}

gives (ϒ1i1 + ϒ2i2) < 0, THEN choose the vector

according to λα,β on Table 34.4;

ELSE, the candidate vector of {10, 11, 15, 22, 23,

26} gives (ϒ1i1 + ϒ2i2) < 0, the vector being

chosen according to λα,β from (table 34.5)

For example, consider the case where UC1 > UC2 + εeU .
Then, the capacitor C2 must be charged and Table 34.4 must
be used if the multilevel inverter is operating in the inverter
mode or Table 34.5 for the regenerative mode. Additionally,
when using Table 34.4, if λα = −1 and λβ = −1, then vector
13 should be used.

Experimental results shown in Fig. 34.61 were obtained with
a low-power, scaled down laboratory prototype (150 V, 3 kW)
of a three-level inverter (Fig. 34.60), controlled by two four-
level comparators, plus described capacitor voltage equalizing
procedures and EPROM-based lookup Tables 34.3–34.5. Tran-
sistors IGBT (MG25Q2YS40) were switched at frequencies
near 4 kHz, with neutral clamp diodes 40HFL, C1 ≈ C2 ≈
20 mF. The load was mainly inductive (3 × 10 mH, 2 �).

The inverter number of levels (three for the phase voltage
and five for the line voltage), together with the adjacent tran-
sitions of inverter legs between levels, are shown in Fig. 34.61a
and, in detail, in Fig. 34.62a.

The performance of the capacitor voltage equalizing strat-
egy is shown in Fig. 34.62b, where the reference current of
phase 1 and the output current of phase 3, together with the
power supply voltage (Udc ≈ 100 V) and the voltage of capaci-
tor C2(UC2), can be seen. It can be noted that the UC2 voltage
is nearly half of the supply voltage. Therefore, the capacitor
voltages are nearly equal. Furthermore, it can be stated that
without this voltage equalization procedure, the three-level
inverter operates only during a brief transient, during which
one of the capacitor voltages vanishes to nearly zero volt and
the other is overcharged to the supply voltage. Figure 34.61b
shows the harmonic spectrum of the output voltages, where
the harmonics due to the switching frequency (≈ 4.5 kHz) and
the fundamental harmonic can be seen.
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FIGURE 34.60 Block diagram of the multilevel converter and control
board.

34.3.5.18 On-line Output Current Control in
Multilevel Inverters

Considering a standard inductive balanced load (R, L) with
electromotive force (u) and isolated neutral, the converter
output currents ik can be expressed

USk = Rik + L
dik
dt

+ uek (34.165)

Now analyzing the circuit of Fig. 34.58, the multilevel
converter switched state-space model can be obtained:

d

dt


i1

i2
i3


=−




R/L 0 0

0 R/L 0

0 0 R/L




i1

i2
i3


−




1/L 0 0

0 1/L 0

0 0 1/L




ue1

ue2

ue3




+



�1/L

�2/L

�3/L


Udc

2
(34.166)
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FIGURE 34.61 (a) Experimental results showing phase and line voltages and (b) harmonic spectrum of output voltages.

The application of the Concordia matrix Eq. (34.152) to
Eq. (34.166), reduces the number of the new model equations
(Eq. (34.167)) to two, since an isolated neutral is assumed.

d

dt

[
iα
iβ

]
=−

[
R/L 0

0 R/L

][
iα
iβ

]
−
[

1/L 0
0 1/L

][
ueα

ueβ

]

+
[

1/L 0
0 1/L

][
USα

USβ

]
(34.167)

The model Eq. (34.167) of this multiple-input multiple-
output system (MIMO) with outputs iα, iβ reveals the control
inputs USα, USβ, dependent on the control variables γk (t ).

From Eqs. (34.167) and (34.91), the two sliding surfaces
S(eα,β,t ) are

S(eα,β, t ) = kα,β(iα,βref − iα,β) = kα,βeα,β = 0 (34.168)

The first derivatives of Eq. (34.167), denoted Ṡ(eα,β,t ), are

Ṡ(eα,β, t ) = kα,β(i̇α,βref − i̇α,β)

= kα,β
[
i̇α,βref + RL−1iα,β + ueα,βL−1 − USα,βL−1]

(34.169)

Therefore, the switching law is

S(eα,β,t )>0⇒ Ṡ(eα,β,t )<0⇒USα,β >Li̇α,βref +Riα,β+ueα,β

S(eα,β,t )<0⇒ Ṡ(eα,β,t )>0⇒USα,β <Li̇α,βref +Riα,β+ueα,β

(34.170)

These switching laws are implemented using the same α, β
vector modulator described above in this example.

Figure 34.63a shows the experimental results. The multi-
level converter and proposed control behavior are obtained
for step inputs (4 to 2A) in the amplitude of the sinus refer-
ences with frequency near 52 Hz (Udc ≈ 150 V). Observe the
tracking ability, the fast transient response, and the balanced
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FIGURE 34.62 Experimental results showing (a) the transitions between adjacent voltage levels (50 V/div; time 20 µs/div) and (b) performance of
the capacitor voltage equalizing strategy; from top trace to bottom: 1 is the voltage reference input; 2 is the power supply voltage; 3 is the mid-point
capacitor voltage, which is maintained close to Udc /2; 4 is the output current of phase 3(2 A/div; 50 V/div; 5 ms/div).

three-phase currents. Figure 34.63b shows almost the same
test (step response from 2 to 4 A at the same frequency),
but now the power supply is set at 50 V and the induc-
tive load was unbalanced (±30% on resistor value). The
response remains virtually the same, with tracking ability,
almost no current distortions due to dead times or semicon-
ductor voltage drops. These results confirm experimentally
that the designed controllers are robust concerning these
nonidealities.

Stopped Stopped

OFF

iref

i1

i3

i2

1999/11/20  17:51:13 1999/11/20  17:39:43
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FIGURE 34.63 Step response of the current control method: (a) step from 4 to 2 A. Traces show the reference current for phase 1 and the three
output currents with 150 V power supply (5 A/div; time scale 20 ms/div) and (b) step from 2 to 4 A in the reference amplitude at 52 Hz. Traces show
the reference current for phase 1 and the three output currents with 50 V power supply.

EXAMPLE 34.17 Sliding-mode vector controllers for
matrix converters
Matrix converters are all silicon ac/ac switching convert-
ers, able to provide variable amplitude almost sinusoidal
output voltages, almost sinusoidal input currents, and
controllable input power factor [18]. They seem to be
very attractive to use in ac drives speed control as well as
in applications related to power-quality enhancement.
The lack of an intermediate energy storage link, their
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main advantage, implies an input/output coupling which
increases the control complexity.

This example presents the design of sliding-mode con-
trollers considering the switched state-space model of the
matrix converter (nine bidirectional power switches),
including the three-phase input filter and the output
load (Fig. 34.64).

34.3.5.19 Output Voltage Control
Ideal three-phase matrix converters are obtained by assem-
bling nine bidirectional switches, with the turn-off capability,
to allow the connection of each one of the input phases to
any one of the output phases (Fig. 34.64). The states of these
switches are usually represented as a nine-element matrix S
(Eq. (34.171)), in which each matrix element, Skj k, j ∈
{1, 2, 3}, has two possible states: Skj = 1 if the switch is
closed (ON) and Skj = 0 if it is open (OFF). Only 27 switch-
ing combinations are possible (Table 34.6), as a result of
the topological constraints (the input phases should never
be short-circuited and the output inductive currents should
never be interrupted), which implies that the sum of all the
Skj of each one of the matrix, k rows must always equal 1
(Eq. (34.171)).

S =

S11 S12 S13

S21 S22 S23

S31 S32 S33


 3∑

j=1

skj = 1 k, j ∈ {1, 2, 3} (34.171)

Based on the matrix S, the output phase vA , vB , vC and line
voltages vAB , vBC , vCA , can be expressed in terms of the input
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FIGURE 34.64 AC/AC matrix converter with input lCr filter.

phase voltages va , vb , vc . The input currents ia , ib , ic can be
expressed as a function of the output currents iA , iB , iC :


 vA

vB

vC


 = S


 va

vb

vc


 ;


 vAB

vBC

vCA


 =


S11 − S21 S12 − S22 S13 − S23

S21 − S31 S22 − S32 S23 − S33

S31 − S11 S32 − S12 S33 − S13




 va

vb

vc


 ;


 ia

ib
ic


 = ST


 iA

iB
iC




(34.172)

The application of the Concordia transformation [Xα,β,0]T

= CT [Xa,b,c ]T to Eq. (34.172) results in the output voltage vec-
tor:

voαβ =
[

voα

voβ

]
=
√

2

3

[
1 −1/2 −1/2

0
√

3/2 −√
3/2

]

×

S11 − S21 S12 − S22 S13 − S23

S21 − S31 S22 − S32 S23 − S33

S31 − S11 S32 − S12 S33 − S13




 va

vb

vc




=
[
ρvαα ρvαβ

ρvβα ρvββ

] [
vcα
vcβ

]
(34.173)
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TABLE 34.6 Switching combinations and output voltage/input current state-space vectors

Group Name A B C vAB vBC vCA ia ib ic Vo δo Ii µi

I

1g a b c vab vbc vca iA iB iC vi δi io µo
2g a c b −vca −vbc −vab iA iC iB −vi −δi + 4π/3 io −µo
3g b a c −vab −vca −vbc iB iA iC −vi −δi io −µo+2π/3
4g b c a vbc vca vab iC iA iB vi δi + 4π/3 io µo + 2π/3
5g c a b vca vab vbc iB iC iA vi δi + 2π/3 io µo + 4π/3
6g c b a −vbc −vab −vca iC iB iA −vi −δi + 2π/3 io −µo + 4π/3

II

+1 a b b vab 0 −vab iA −iA 0 2/
√

3vab π/6 2/
√

3iA −π/6
−1 b a a −vab 0 vab −iA iA 0 −2/

√
3vab π/6 −2/

√
3iA −π/6

+2 b c c vbc 0 −vbc 0 iA −iA 2/
√

3vbc π/6 2/
√

3iA π/2
−2 c b b −vbc 0 vbc 0 −iA iA −2/

√
3vbc π/6 −2/

√
3iA π/2

+3 c a a vca 0 −vca −iA 0 iA 2/
√

3vca π/6 2/
√

3iA 7π/6
−3 a c c −vca 0 vca iA 0 −iA −2/

√
3vca π/6 −2/

√
3iA 7π/6

+4 b a b −vab vab 0 iB −iB 0 2/
√

3vab 5π/6 2/
√

3iB −π/6
−4 a b a vab −vab 0 −iB iB 0 −2/

√
3vab 5π/6 −2/

√
3iB −π/6

+5 c b c −vbc vbc 0 0 iB −iB 2/
√

3vbc 5π/6 2/
√

3iB π/2
−5 b c b vbc −vbc 0 0 −iB iB −2/

√
3vbc 5π/6 −2/

√
3iB π/2

+6 a c a −vca vca 0 −iB 0 iB 2/
√

3vca 5π/6 2/
√

3iB 7π/6
−6 c a c vca −vca 0 iB 0 −iB −2/

√
3vca 5π/6 −2/

√
3iB 7π/6

+7 b b a 0 vab vab iC −iC 0 2/
√

3vab 3π/2 2/
√

3iC −π/6
−7 a a b 0 vab vab −iC iC 0 −2/

√
3vab 3π/2 −2/

√
3iC −π/6

+8 c c b 0 −vbc vbc 0 iC −iC 2/
√

3vbc 3π/2 2/
√

3iC π/2
−8 b b c 0 vbc −vbc 0 −iC iC −2/

√
3vbc 3π/2 −2/

√
3iC π/2

+9 a a c 0 −vca vca −iC 0 iC 2/
√

3vca 3π/2 2/
√

3iC 7π/6
−9 c c a 0 vca −vca iC 0 −iC −2/

√
3vca 3π/2 −2/

√
3iC 7π/6

za a a a 0 0 0 0 0 0 0 - 0 -
III zb b b b 0 0 0 0 0 0 0 - 0 -

zc c c c 0 0 0 0 0 0 0 - 0 -

where vcαβ is the input filter capacitor voltage and
ρvαα , ρvαβ , ρvβα , ρvββ are functions of the ON/OFF state of the
nine Skj switches:

[
ρvαα ρvαβ

ρvβα ρvββ

]
=
[

1/2(S11 − S21 − S12 + S22)

1/2
√

3(S11 + S21 − 2S31 − S12 − S22 + 2S32)

√
3/2(S11 − S21 + S12 − S22)

1/2(S11 + S21 − 2S31 + S12 + S22 − 2S32)

]

(34.174)

The average value voα,β of the output voltage vector, in αβ

coordinates, during one switching period is the output variable
to be controlled (since voα,β is discontinuous).

voαβ = 1

Ts

(n+1)Ts∫

nTs

voαβ dt (34.175)

Considering the control goal voαβ = voαβref
, the sliding

surface S(eαβ, t ) (kαβ > 0) is:

S(eαβ, t ) = kαβ

T

T∫

0

(voαβref
− voαβ )dt = 0 (34.176)

The first derivative of Eq. (34.176) is:

Ṡ(eαβ, t ) = kα(voαβref
− voαβ ) (34.177)

As the sliding-mode stability is guaranteed if Sαβ(eαβ, t )
Ṡαβ(eαβ, t ) < 0, the criterion to choose the state-space
vectors is:

Sαβ(eαβ, t ) < 0 ⇒ Ṡαβ(eαβ, t ) > 0 ⇒ voαβ < voαβref

Sαβ(eαβ, t ) > 0 ⇒ Ṡαβ(eαβ, t ) < 0 ⇒ voαβ > voαβref

(34.178)

This implies that the sliding mode is reached only when the
vector applied to the converter has the desired amplitude and
angle.
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FIGURE 34.65 (a) Input voltages and their corresponding sector and (b) representation of the output voltage state-space vectors when the input
voltages are located at sector Vi 1.

According to Table 34.6, the 6 vectors of group I have fixed
amplitude but time varying phase, the 18 vectors of group
II have variable amplitude and vectors of group III are null.
Therefore, from the load viewpoint, the 18 highest amplitude
vectors (6 vectors from group I and 12 vectors from group II)
and one null vector are suitable to guarantee the sliding-mode
stability.

Therefore, if two three-level comparators (Cαβ ∈ {−1, 0, 1})
are used to quantize the deviations of Eq. (34.178) from
zero, the nine output voltage error combinations (33) are not
enough to guarantee the choice of all the 19 available vectors.
The extra vectors may be used to control the input power fac-
tor. As an example, if the output voltage error is quantized as
Cα = 1, Cβ = 1, at sector Vi1 (Fig. 34.65), the vectors −3, +1,
or 1g might be used to control the output voltage. The final
choice would depend on the input current error.

34.3.5.20 Input Power Factor Control
Assuming that the source is a balanced sinusoidal three-phase
voltage supply with frequency ωi , the switched state-space
model equations of the converter input filter is obtained in
abc coordinates.




dila
dt = 1

3l vbc + 2
3l vca + 1

l via

dilb
dt = − 2

3l vbc − 1
3l vca + 1

l vib
dvbc
dt = 1

3C ila + 2
3C ilb − 1

3Cr vbc + 1
3Cr via + 2

3Cr vib

− 1
3C (S11 − S31 + 2S12 − S32) iA

− 1
3C (S21 − S31 + 2S22 − S32) iB

dvca
dt = − 2

3C ila − 1
3C ilb − 1

3Cr vca − 2
3Cr via − 1

3Cr vib

+ 1
3C (2S11 − 2S31 + S12 − S32) iA

+ 1
3C (2S21 − 2S31 + S22 − S32) iB

(34.179)

To control the input power factor, a reference frame
synchronous with one of the input voltages via , may be
used applying the Blondel–Park transformation to the matrix
converter switched state-space model (Eq. (34.179)), where
(ρidd , ρidq , ρiqd , ρiqq are functions of the ON/OFF states of the
nine Skj switches):




dild
dt =ωi ilq − 1

2l vcd − 1
2
√

3l
vcq + 1

l viq

dilq
dt =−ωi ild + 1

2
√

3l
vcd − 1

2l vcq + 1
l viq

dvcd
dt = 1

2C ild − 1
2
√

3C
ilq − 1

3Cr vcd +ωivcq + −ρidd
+
(
ρiqd

/
√

3
)

2C iod

+−ρidq
+
(
ρiqq /

√
3
)

2C ioq + 1
2Cr vid − 1

2
√

3Cr
viq

dvcq

dt = 1
2
√

3C
ild + 1

2C ilq −ωivcd − 1
3Cr vcq + −

(
ρidd

/
√

3
)
−ρiqd

2C iod

+−
(
ρidq

/
√

3
)
−ρiqq

2C ioq + 1
2
√

3Cr
vid + 1

2Cr viq

(34.180)

As a consequence, neglecting ripples, all the input variables
become time-invariant, allowing a better understanding of the
sliding-mode controller design, as well as the choice of the
most adequate state-space vector. Using this state-space model,
the input iid and iiq currents are:




iid = ild + l
r

(
dild
dt −ωilq

)

iiq = ilq + l
r

( dilq
dt +ωild

)⇔
{

iid = ild − 1
2r vcd − 1

2
√

3r
vcq + 1

r vid

iiq = ilq + 1
2
√

3r
vcd − 1

2r vcq + 1
r viq

(34.181)

The input power factor controller should consider the
input–output power constraint (Eq. (34.182)) (the converter
losses and ripples are neglected), obtained as a function
of the input and output voltages and currents (the input



[15:56 5/9/2006 Chapter-34.tex] RASHID: Power Electronics Handbook, 2e Page: 991 935–998

34 Control Methods for Switching Power Converters 991

voltage viq is equal to zero in the chosen dq rotating frame).
The choice of one output voltage vector automatically defines
the instantaneous value of the input iid (t ) current.

vid iid ≈ 1

3

(√
3

2
vod + 1

2
voq

)
iod + 1

3

(
−1

2
vod +

√
3

2
voq

)
ioq

(34.182)

Therefore, only the sliding surface associated to the iiq (t )
current is needed, expressed as a function of the system state
variables and based on the state-space model determined in
Eq. (34.180):




diiq
dt =−ωild + 1

3Cr ilq +
(
− 1

6
√

3Cr2 + ω
2r

)
vcd

+
(

1
6Cr2 + ω

2
√

3r

)
vcq + 1

2
√

3l
vcd − 1

2l vcq

+ 1
3Cr

(
ρiqd iod +ρiqq ioq

)
1
r

dviq

dt − 1
3Cr2 viq + 1

l viq

(34.183)

As the derivative of the input iiq current depends directly on
the control variables ρiqd , ρiqq , the sliding function Siq (eiq , t )
will depend only on the input current error eiq = iiqref − iiq .

Siq (eiq , t ) = kiq

(
iiqref − iiq

)
(34.184)

As the sliding-mode stability is guaranteed if Sαβ(eαβ, t )
Ṡαβ(eαβ, t ) < 0, the criterion to choose the state-space
vectors is:

Siq (eiq , t ) > 0 ⇒ Ṡiq (eiq , t ) < 0 ⇒ diq
dt

>
diqref

dt
⇒ iiq ↑

Siq (eiq , t ) < 0 ⇒ Ṡiq (eiq , t ) > 0 ⇒ diq
dt

<
diqref

dt
⇒ iiq ↓

(34.185)

Also, to choose the adequate input current vector it is nec-
essary: (a) to know the location of the output currents, as the
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FIGURE 34.66 (a) Output currents and their corresponding sector and (b) representation of input current state-space vectors, when the output
currents are located at sector Io1. The dq-axis is represented considering that the input voltages are located in zone Vi1.

input currents depend on the output currents location (Table
34.6); (b) to know the dq frame location. As in the chosen
frame (synchronous with the via input voltage), the dq-axis
location depends on the via input voltage location, the sign
of the input current vector iiq component can be determined
knowing the location of the input voltages and the location of
the output currents (Fig. 34.66).

Considering the previous example, at sector Vi1 (Fig. 34.65),
for an error of Cα = 1 and Cβ = 1, vectors −3, +1 or 1g
might be used to control the output voltage. When compared,
at sector Io1 (Fig. 34.66b), these three vectors have positive
id components and, as a result, will have a similar effect on
the input id current. However, they have a different effect on
the iq current: vector −3 has a positive iq component, vector
+1 has a negative iq component and vector 1g has a nearly
zero iq component. As a result, if the output voltage errors are
Cα = 1 and Cβ = 1, at sectors Vi1 and Io1, vector −3 should
be chosen if the input current error is quantized as Ciq = 1
(Fig. 34.66b), vector +1 should be chosen if the input current
error is quantized as Ciq = −1 and if the input current error
is Ciq = 0, vector 1g or −3 might be used.

When the output voltage errors are quantized as zero
Cαβ = 0, the null vectors of group III should be used only if the
input current error is Ciq = 0. Otherwise (being Ciq 
= 0), the
lowest amplitude voltage vectors ({ + 2, −8, +5, −2, +8, −5}
at sector Vi1 at Fig. 34.65b), that were not used to control the
output voltages, might be chosen to control the input iq cur-
rent as these vectors may have a strong influence on the input
iq current component (Fig. 34.66b).

To choose one of these six vectors, only the vectors located
as near as possible to the output voltages sector (Fig. 34.67) is
chosen (to minimize the output voltage ripple), and a five level
comparator is enough. As a result, there will be 9 × 5 = 45
error combinations to select 27 space vectors. Therefore, the
same vector may have to be used for more than one error
combination.

With this reasoning, it is possible to obtain Table 34.7 for
sector Vi1, Io1, and Vo1 and generalize it for all the other
sectors.
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TABLE 34.7 State-space vectors choice at sector Vi1, Io1, and Vo1

Ciq

Cα Cβ −2 −1 0 1 2

−1 −1 +3 +3 +3 −1 −1
−1 0 5g +3 −6 −1 −1
−1 1 −6 −6 −6 +4 3g

0 −1 6g −9 −9 +7 4g
0 0 +8 +8 0 −5 2
0 1 −7 −7 +9 +9 +9
1 −1 −4 −4 +6 +6 +6
1 0 +1 +1 +6 −3 −3
1 1 +1 +1 1g −3 −3
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FIGURE 34.68 Dynamic responses obtained with a three-phase load: (a) output reference voltage step (R = 7 �, L = 15 mH, fo = 20 Hz): input
voltage via (t) (CH1), input current iia (t) (CH3), output reference voltage vBCref (t) (CH4), and output current iA(t) (CH2) and (b) input reference
current iiqref (t) step: input voltage via (t) (CH1), input current iia (t) (CH3), input reference current iiqref (t) (CH2), and output current iA(t) (CH4).

The experimental results shown in (Fig. 34.68) were
obtained with a low-power prototype (1 kW), with two three-
level comparators and one five-level comparator, associated to
an EPROM lookup table. The transistors IGBT were switched
at frequencies near 10 kHz.

The results show the response to a step on the output
voltage reference (Fig. 34.68a) and on the input reference cur-
rent (Fig. 34.68b), for a three-phase output load (R = 7 �,
L = 15 mH), with kαβ = 100 and kiq = 2. These results
show that the matrix converter may operate with a near unity
input power factor (Fig. 34.68a – fo = 20 Hz), or with lead/lag
power factor (Fig. 34.68b), guaranteeing very low ripple on the
output currents, a good tracking capability and fast transient
response times.
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34.4 Fuzzy Logic Control of Switching
Converters

34.4.1 Introduction

Fuzzy logic control is a heuristic approach that easily embeds
the knowledge and key elements of human thinking in
the design of nonlinear controllers [19–21]. Qualitative and
heuristic considerations, which cannot be handled by conven-
tional control theory, can be used for control purposes in a
systematic form, and applying fuzzy control concepts [22].
Fuzzy logic control does not need an accurate mathematical
model, can work with imprecise inputs, can handle nonlinear-
ity, and can present disturbance insensitivity greater than the
most nonlinear controllers. Fuzzy logic controllers usually out-
perform other controllers in complex, nonlinear, or undefined
systems for which a good practical knowledge exists.

Fuzzy logic controllers are based on fuzzy sets, i.e. classes of
objects in which the transition from membership to nonmem-
bership is smooth rather than abrupt. Therefore, boundaries
of fuzzy sets can be vague and ambiguous, making them useful
for approximation models.

The first step in the fuzzy controller synthesis procedure
is to define the input and output variables of the fuzzy con-
troller. This is done accordingly with the expected function
of the controller. There are no general rules to select those
variables, although typically the variables chosen are the states
of the controlled system, their errors, error variation and/or
error accumulation. In switching power converters, the fuzzy
controller input variables are commonly the output voltage
or current error, and/or the variation or accumulation of
this error. The output variables u(k) of the fuzzy controller
can define the converter duty cycle (Fig. 34.60), or a refer-
ence current to be applied in an inner current-mode PI or a
sliding-mode controller.

The fuzzy controller rules are usually formulated in linguis-
tic terms. Thus, the use of linguistic variables and fuzzy sets
implies the fuzzification procedure, i.e. the mapping of the
input variables into suitable linguistics values.

Rule evaluation or decision-making infers, using an infer-
ence engine, the fuzzy control action from the knowledge of
the fuzzy rules and the linguistic variable definition.

Fuzzification Defuzzification
Inference
Engine

Rule
Base

Data
Base

y(k)Power
Converter

FUZZY
CONTROLLER

u(k)
r(k)

_
+

+ e(k)

e‘(k)

FIGURE 34.69 Structure of a fuzzy logic controller.

The output of a fuzzy controller is a fuzzy set, and thus it
is necessary to perform a defuzzification procedure, i.e. the
conversion of the inferred fuzzy result to a nonfuzzy (crisp)
control action, that better represents the fuzzy one. This last
step obtains the crisp value for the controller output u(k)
(Fig. 34.69).

These steps can be implemented on-line or off-line. On-line
implementation, useful if an adaptive controller is intended,
performs real-time inference to obtain the controller output
and needs a fast enough processor. Off-line implementation
employs a lookup table built according to the set of all pos-
sible combinations of input variables. To obtain this lookup
table, the input values in a quantified range are converted
(fuzzification) into fuzzy variables (linguistic). The fuzzy set
output, obtained by the inference or decision-making engine
according to linguistic control rules (designed by the knowl-
edge expert), is then, converted into numeric controller output
values (defuzzification). The table contains the output for all
the combinations of quantified input entries. Off-line pro-
cess can actually reduce the controller actuation time since
the only effort is limited to consulting the table at each
iteration.

This section presents the main steps for the implementation
of a fuzzy controller suitable for switching converter control.
A meaningful example is provided.

34.4.2 Fuzzy Logic Controller Synthesis

Fuzzy logic controllers consider neither the parameters of the
switching converter or their fluctuations, nor the operating
conditions, but only the experimental knowledge of the switch-
ing converter dynamics. In this way, such a controller can be
used with a wide diversity of switching converters implying
only small modifications. The necessary fuzzy rules are simply
obtained considering roughly the knowledge of the switching
converter dynamic behavior.

34.4.2.1 Fuzzification
Assume, as fuzzy controller input variables, an output volt-
age (or current) error, and the variation of this error. For
the output, assume a signal u(k), the control input of the
converter.
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A. Quantization Levels Consider the reference r(k) of the
converter output kth sample, y(k). The tracking error e(k)
is e(k) = r(k) − y(k) and the output error change �e (k),
between the samples k and k − 1, is determined by �e (k) =
e(k) − e(k − 1).

These variables and the fuzzy controller output u(k), usu-
ally ranging from −10 to 10 V, can be quantified in m levels
{ − (m − 1)/2, +(m − 1)/2}. For off-line implementation, m
sets a compromise between the finite length of a lookup table
and the required precision.

B. Linguistic Variables and Fuzzy Sets The fuzzy sets for
xe , the linguistic variable corresponding to the error e(k), for
x�e , the linguistic variable corresponding to the error variation
�e (k), and for xu the linguistic variable of the fuzzy controller
output u(k), are usually defined as positive big (PB), positive
medium (PM ), positive small (PS), zero (ZE), negative small
(NS), negative medium (NM ), and negative big (NB), instead
of having numerical values.

In most cases, the use of these seven fuzzy sets is the best
compromise between accuracy and computational task.

C. Membership Functions A fuzzy subset, for example
Si (Si = (NB, NM, NS, ZE, PS, PM, or PB)) of a universe E ,
collection of e(k) values denoted generically by {e}, is charac-
terized by a membership function µSi: E →[0,1], associating
with each element e of universe E , a number µSi(e) in the
interval [0,1], which represents the grade of membership of
e to E . Therefore, each variable is assigned a membership
grade to each fuzzy set, based on a corresponding member-
ship function (Fig. 34.70). Considering the m quantization
levels, the membership function µSi(e) of the element e in the
universe of discourse E , may take one of the discrete values
included in µSi(e) ∈{0; 0.2; 0.4; 0.6; 0.8; 1; 0.8; 0.6; 0.4; 0.2; 0}.
Membership functions are stored in the database (Fig. 34.69).

Considering e(k) = 2 and �e (k) = −3, taking into account
the staircase-like membership functions shown in Fig. 34.70,
it can be said that xe is PS and also ZE, being equally PS and
ZE. Also, x�e is NS and ZE, being less ZE than NS.

D. Linguistic Control Rules The generic linguistic control
rule has the following form: “IF xe (k) is membership of the
set Si = (NB, NM, NS, ZE, PS, PM, or PB) AND x�e (k) is

ZE PS PM PBNSNB NM

0 5 10 15 20−20 −15 −10 −5
xe
x∆e

xu
xe = 2

0

1

x∆e = −3

FIGURE 34.70 Membership functions in the universe of discourse.

membership of the set Sj = (NB, NM, NS, ZE, PS, PM, or
PB), THEN the output control variable is membership of the
set Su = (NB, NM, NS, ZE, PS, PM, or PB).”

Usually, the rules are obtained considering the most com-
mon dynamic behavior of switching converters, the second-
order system with damped oscillating response (Fig. 34.71).
Analyzing the error and its variation, together with the rough
linguistic knowledge of the needed control input, an expert
can obtain linguistic control rules such as the ones displayed
in Table 34.8. For example, at point 6 of Fig. 34.71 the rule is
“if xe (k) is NM AND x�e (k) is ZE, THEN xu(k + 1) should
be NM.”

θ(t)
s1 s2 s3 s4

5 7
8

0
0

t

6

FIGURE 34.71 Reference dynamic model of switching converters:
second-order damped oscillating error response.

TABLE 34.8 Linguistic control rules

xe (k)x�e (k) NB NM NS ZE PS PM PB

NB NB NB NB NM NM PS PM
NM NB NB NM NS NM PM PB
NS NB NB NM NS NS PM PB
ZE NB NM NS ZE PS PM PB
PS NB NM PS PS PM PB PB
PM NB NM PM PS PM PB PB
PB NM NS PM PM PB PB PB

Table34.8, for example, states that:

IF xe (k) is NB AND x�e (k) is NB, THEN xu(k + 1) must be
NB, or
IF xe (k) is PS AND x�e (k) is NS, THEN xu(k + 1) must be
NS, or
IF xe (k)is PS AND x�e (k) is ZE, THEN xu(k + 1) must be
PS, or
IF xe (k) is ZE AND x�e (k) is NS, THEN xu(k + 1) must be
NS, or
IF xe (k) is ZE AND x�e (k) is ZE, THEN xu(k + 1) must be
ZE, or
IF…
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These rules (rule base) alone do not allow the definition of the
control output, as several of them may apply at the same time.

34.4.2.2 Inference Engine
The result of a fuzzy control algorithm can be obtained using
the control rules of Table 34.8, the membership functions, and
an inference engine. In fact, any quantified value for e(k) and
�e (k) is often included into two linguistic variables. With the
membership functions used, and knowing that the controller
considers e(k) and �e (k), the control decision generically
must be taken according to four linguistic control rules.

To obtain the corresponding fuzzy set, the min–max infer-
ence method can be used. The minimum operator describes
the “AND” present in each of the four rules, that is, it calculates
the minimum between the discrete value of the membership
function µSi(xe (k)) and the discrete value of the member-
ship function µSj(x�e (k)). The “THEN” statement links this
minimum to the membership function of the output variable.
The membership function of the output variable will there-
fore include trapezoids limited by the segment min(µSi(xe (k)),
µSj(x�e (k))).

The OR operator linking the different rules is implemented
by calculating the maximum of all the (usually four) rules.
This mechanism to obtain the resulting membership function
of the output variable is represented in Fig. 34.72.

34.4.2.3 Defuzzification
As shown, the inference method provides a resulting mem-
bership function µSr(xu(k)), for the output fuzzy variable xu

AND0,6

0,2
min

THEN

Rule 1:

IF xe is Positive Small               AND x∆e is Zero THEN result is Positive Small

Rule 2:

IF xe   is Zero AND x∆e is Negative Small  THEN result is Negative Small

xe = 3 x∆e
 = −4

max

Resulting membership function
0 5−5

1

PSZENS PSZENS

min

PSZENS

AND
0,80,4 min

THEN

0,4

resultPSZENS PSZENS

min

ZENS

0,2

NM

PSZENSNM
0,2

0,4

FIGURE 34.72 Application of the min–max operator to obtain the output membership function.

(Fig. 34.72). Using a defuzzification process, this final mem-
bership function, obtained by combining all the membership
functions, as a consequence of each rule, is then converted into
a numerical value, called u(k). The defuzzification strategy can
be the center of area (COA) method. This method generates
one output value u(k), which is the abscissa of the gravity cen-
ter of the resulting membership function area, given by the
following relation:

u(k) =
(

m∑
i=1

µSr(xu(k))xu(k)

)/ m∑
i=1

µSr(xu(k)) (34.186)

This method provides good results for output control.
Indeed, for a weak variation of e(k) and �e (k), the center
of the area will move just a little, and so does the controller
output value. By comparison, the alternative defuzzification
method, mean of maximum strategy (MOM) is advantageous
for fast response, but it causes a greater steady-state error and
overshoot (considering no perturbations).

34.4.2.4 Lookup Table Construction
Using the rules given in Table 34.8, the min–max inference
procedure and COA defuzzification, all the controller out-
put values for all quantified e(k) and �e (k), can be stored
in an array to serve as the decision-lookup table. This lookup
table usually has a three-dimensional representation similar
to Fig. 34.73. A microprocessor-based control algorithm just
picks up output values from the lookup table.
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∆es (k)

e (k)

u (k)

FIGURE 34.73 Three-dimensional view of the lookup table.

34.4.3 Example: Near Unity Power Factor
Buck–boost Rectifier

EXAMPLE 34.18 Fuzzy logic control of unity power
factor buck–boost rectifiers
Consider the near unity power factor buck–boost recti-
fier of Fig. 34.74.

The switched state-space model of this converter can
be written:




dis
dt = −Rf

Lf
is − 1

Lf
vCf + 1

Lf
vs

dvCf

dt = 1
Cf

is − γp

Cf
iLo

diLo
dt = γp

Lo
vCf − γ(1−|γp|)

Lo
VCo

dVCo
dt = 1−|γp|

Co
iLo − 1

RoCo
Vo

(34.187)

where γp =




1 , (switch 1 and 4 are ON ) and

(switch 2 and 3 are OFF)

0 , all switches are OFF

−1, (switch 2 and 3 are ON ) and

(switch 1 and 4 are OFF)

and γ =
{

1 , iLo > 0
0 , iLo ≤ 0

For comparison purposes, a PI output voltage con-
troller is designed considering that a current-mode
PWM modulator enforces the reference value for the

Lo Co

D1

IGBT1

D3

IGBT3

IGBT2

D2

IGBT4

D4

Vo

Ro

is

vs

Lf, Rf

Cf

Do

iCf

irec

iLo iCo

iDo

io

vLo

VCo

vCf

FIGURE 34.74 Unity power factor buck–boost rectifier with four
IGBTs.

is current (which usually exhibits a fast dynamics com-
pared with the dynamics of VCo ). A first-order model,
similar to Eq. (34.146) is obtained. The PI gains are simi-
lar to Eq. (34.116) and load-dependent (Kp = Co/(2Td ),
Ki = 1/(2Td Ro)).

A fuzzy controller is obtained considering the
approach outlined, with seven membership functions
for the output voltage error, five for its change, and
three membership functions for the output. The linguis-
tic control rules are obtained as the ones depicted in
Table 34.8 and the lookup table gives a mapping sim-
ilar to Fig. 34.73. Performances obtained for the step
response show a fuzzy controlled rectifier behavior close
to the PI behavior. The advantages of the fuzzy con-
troller emerge for perturbed loads or power supplies,
where the low sensitivity of the fuzzy controller to sys-
tem parameters is clearly seen (Fig. 34.75). Therefore,
the fuzzy controllers can be advantageous for switching
converters with changing loads, power supply voltages,
and other external disturbances.

34.5 Conclusions

Control techniques for switching converters were reviewed.
Linear controllers based on state-space averaged models or
circuits are well established and suitable for the application
of linear systems control theory. Obtained linear controllers
are useful, if the converter operating point is almost constant
and the disturbances are not relevant. For changing operat-
ing points and strong disturbances, linear controllers can be
enhanced with nonlinear, antiwindup, soft-start, or saturation
techniques. Current-mode control will also help to overcome
the main drawbacks of linear controllers.

Sliding mode is a nonlinear approach well adapted for the
variable structure of the switching converters. The critical
problem of obtaining the correct sliding surface was high-
lighted, and examples were given. The sliding-mode control
law allows the implementation of the switching converter
controller, and the switching law gives the PWM modula-
tor. The system variables to be measured and fed back are
identified. The obtained reduced-order dynamics is not depen-
dent on system parameters or power supply (as long as it
is high enough), presents no steady-state errors, and has a
faster response speed (compared with linear controllers), as
the system order is reduced and non-idealities are elimi-
nated. Should the measure of the state variables be difficult,
state observers may be used, with steady-state errors eas-
ily corrected. Sliding-mode controllers provide robustness
against bounded disturbances and an elegant way to obtain
the controller and modulator, using just the same theo-
retical approach. Fixed-frequency operation was addressed
and solved, together with the short-circuit-proof operation.
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FIGURE 34.75 Simulated result of the output voltage response to load disturbances (Ro = 50–150 � at time 0.3 s): (a) PI control and (b) fuzzy logic
control.

Presently, fixed-frequency techniques were applied to convert-
ers that can only operate with fixed frequency. Sliding-mode
techniques were successfully applied to MIMO switching
power converters and to multilevel converters, solving the
capacitor voltage divider equalization. Sliding-mode control
needs more information from the controlled system than
do the linear controllers, but is probably the most ade-
quate tool to solve the control problem of switching power
converters.

Fuzzy logic controller synthesis was briefly presented. Fuzzy
logic controllers are based on human experience and intu-
ition and do not depend on system parameters or operating
points. Fuzzy logic controllers can be easily applied to various
types of power converters having the same qualitative dynam-
ics. Fuzzy logic controllers, like sliding-mode controllers, show
robustness to load and power supply perturbations, semi-
conductor non-idealities (such as switch delays or uneven
conduction voltage drops), and dead times. The controller
implementation is simple, if based on the off-line concept. On-
line implementation requires a fast microprocessor but can
include adaptive techniques to optimize the rule base and/or
the database.
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